Cargando…
Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition †
The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each cont...
Autores principales: | Janko, Vito, Luštrek, Mitja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795586/ https://www.ncbi.nlm.nih.gov/pubmed/29286301 http://dx.doi.org/10.3390/s18010080 |
Ejemplares similares
-
A General Framework for Making Context-Recognition Systems More Energy Efficient †
por: Janko, Vito, et al.
Publicado: (2021) -
What Actually Works for Activity Recognition in Scenarios with Significant Domain Shift: Lessons Learned from the 2019 and 2020 Sussex-Huawei Challenges †
por: Kalabakov, Stefan, et al.
Publicado: (2022) -
Finding Provably Optimal Markov Chains
por: Spel, Jip, et al.
Publicado: (2021) -
An Efficient Bayesian Approach to Exploit the Context of Object-Action Interaction for Object Recognition
por: Yoon, Sungbaek, et al.
Publicado: (2016) -
Optimizing non-pharmaceutical intervention strategies against COVID-19 using artificial intelligence
por: Janko, Vito, et al.
Publicado: (2023)