Cargando…
An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models
This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetri...
Autores principales: | Alexandridis, Alex, Stogiannos, Marios, Papaioannou, Nikolaos, Zois, Elias, Sarimveis, Haralambos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795819/ https://www.ncbi.nlm.nih.gov/pubmed/29361781 http://dx.doi.org/10.3390/s18010315 |
Ejemplares similares
-
Multi-Ship Control and Collision Avoidance Using MPC and RBF-Based Trajectory Predictions
por: Papadimitrakis, Myron, et al.
Publicado: (2021) -
A Machine Learning Model Ensemble for Mixed Power Load Forecasting across Multiple Time Horizons
por: Giamarelos, Nikolaos, et al.
Publicado: (2023) -
Integrated neural network model with pre-RBF kernels
por: Wen, Hui, et al.
Publicado: (2021) -
Development of artificial neural network models to predict the PAMPA effective permeability of new, orally administered drugs active against the coronavirus SARS-CoV-2
por: Gousiadou, Chrysoula, et al.
Publicado: (2023) -
A New Optimized GA-RBF Neural Network Algorithm
por: Jia, Weikuan, et al.
Publicado: (2014)