Cargando…
Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity
Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most eff...
Autores principales: | Napoletano, Paolo, Piccoli, Flavio, Schettini, Raimondo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795842/ https://www.ncbi.nlm.nih.gov/pubmed/29329268 http://dx.doi.org/10.3390/s18010209 |
Ejemplares similares
-
No Reference, Opinion Unaware Image Quality Assessment by Anomaly Detection
por: Leonardi, Marco, et al.
Publicado: (2021) -
An Open-Source Platform for GIS Data Management and Analytics
por: Piccoli, Flavio, et al.
Publicado: (2023) -
T1K+: A Database for Benchmarking Color Texture Classification and Retrieval Methods
por: Cusano, Claudio, et al.
Publicado: (2021) -
Quasi Real-Time Apple Defect Segmentation Using Deep Learning
por: Agarla, Mirko, et al.
Publicado: (2023) -
Fine-Grained Face Annotation Using Deep Multi-Task CNN
por: Celona, Luigi, et al.
Publicado: (2018)