Cargando…

A New Method for Sensing Soil Water Content in Green Roofs Using Plant Microbial Fuel Cells

Green roofs have many benefits, but in countries with semiarid climates the amount of water needed for irrigation is a limiting factor for their maintenance. The use of drought-tolerant plants such as Sedum species, reduces the water requirements in the dry season, but, even so, in semiarid environm...

Descripción completa

Detalles Bibliográficos
Autores principales: Tapia, Natalia F., Rojas, Claudia, Bonilla, Carlos A., Vargas, Ignacio T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795870/
https://www.ncbi.nlm.nih.gov/pubmed/29283378
http://dx.doi.org/10.3390/s18010071
Descripción
Sumario:Green roofs have many benefits, but in countries with semiarid climates the amount of water needed for irrigation is a limiting factor for their maintenance. The use of drought-tolerant plants such as Sedum species, reduces the water requirements in the dry season, but, even so, in semiarid environments these can reach up to 60 L m(−2) per day. Continuous substrate/soil water content monitoring would facilitate the efficient use of this critical resource. In this context, the use of plant microbial fuel cells (PMFCs) emerges as a suitable and more sustainable alternative for monitoring water content in green roofs in semiarid climates. In this study, bench and pilot-scale experiments using seven Sedum species showed a positive relationship between current generation and water content in the substrate. PMFC reactors with higher water content (around 27% vs. 17.5% v/v) showed larger power density (114.6 and 82.3 μW m(−2) vs. 32.5 μW m(−2)). Moreover, a correlation coefficient of 0.95 (±0.01) between current density and water content was observed. The results of this research represent the first effort of using PMFCs as low-cost water content biosensors for green roofs.