Cargando…
An Event-Triggered Machine Learning Approach for Accelerometer-Based Fall Detection
The fixed-size non-overlapping sliding window (FNSW) and fixed-size overlapping sliding window (FOSW) approaches are the most commonly used data-segmentation techniques in machine learning-based fall detection using accelerometer sensors. However, these techniques do not segment by fall stages (pre-...
Autores principales: | Putra, I Putu Edy Suardiyana, Brusey, James, Gaura, Elena, Vesilo, Rein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795925/ https://www.ncbi.nlm.nih.gov/pubmed/29271895 http://dx.doi.org/10.3390/s18010020 |
Ejemplares similares
-
Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls
por: Palmerini, Luca, et al.
Publicado: (2020) -
Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning
por: Althobaiti, Turke, et al.
Publicado: (2020) -
Event-Centered Data Segmentation in Accelerometer-Based Fall Detection Algorithms
por: Šeketa, Goran, et al.
Publicado: (2021) -
A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks
por: Lei, Chunyang, et al.
Publicado: (2016) -
Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-World Falls
por: Bagalà, Fabio, et al.
Publicado: (2012)