Cargando…

Time Domain Near Infrared Spectroscopy Device for Monitoring Muscle Oxidative Metabolism: Custom Probe and In Vivo Applications

Measurement of muscle oxidative metabolism is of interest for monitoring the training status in athletes and the rehabilitation process in patients. Time domain near infrared spectroscopy (TD NIRS) is an optical technique that allows the non-invasive measurement of the hemodynamic parameters in musc...

Descripción completa

Detalles Bibliográficos
Autores principales: Re, Rebecca, Pirovano, Ileana, Contini, Davide, Spinelli, Lorenzo, Torricelli, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795927/
https://www.ncbi.nlm.nih.gov/pubmed/29342097
http://dx.doi.org/10.3390/s18010264
Descripción
Sumario:Measurement of muscle oxidative metabolism is of interest for monitoring the training status in athletes and the rehabilitation process in patients. Time domain near infrared spectroscopy (TD NIRS) is an optical technique that allows the non-invasive measurement of the hemodynamic parameters in muscular tissue: concentrations of oxy- and deoxy-hemoglobin, total hemoglobin content, and tissue oxygen saturation. In this paper, we present a novel TD NIRS medical device for muscle oxidative metabolism. A custom-printed 3D probe, able to host optical elements for signal acquisition from muscle, was develop for TD NIRS in vivo measurements. The system was widely characterized on solid phantoms and during in vivo protocols on healthy subjects. In particular, we tested the in vivo repeatability of the measurements to quantify the error that we can have by repositioning the probe. Furthermore, we considered a series of acquisitions on different muscles that were not yet previously performed with this custom probe: a venous-arterial cuff occlusion of the arm muscle, a cycling exercise, and an isometric contraction of the vastus lateralis.