Cargando…
Telomere Biology and Thoracic Aortic Aneurysm
Ascending aortic aneurysms are mostly asymptomatic and present a great risk of aortic dissection or perforation. Consequently, ascending aortic aneurysms are a source of lethality with increased age. Biological aging results in progressive attrition of telomeres, which are the repetitive DNA sequenc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795955/ https://www.ncbi.nlm.nih.gov/pubmed/29267201 http://dx.doi.org/10.3390/ijms19010003 |
_version_ | 1783297398795141120 |
---|---|
author | Aschacher, Thomas Salameh, Olivia Enzmann, Florian Messner, Barbara Bergmann, Michael |
author_facet | Aschacher, Thomas Salameh, Olivia Enzmann, Florian Messner, Barbara Bergmann, Michael |
author_sort | Aschacher, Thomas |
collection | PubMed |
description | Ascending aortic aneurysms are mostly asymptomatic and present a great risk of aortic dissection or perforation. Consequently, ascending aortic aneurysms are a source of lethality with increased age. Biological aging results in progressive attrition of telomeres, which are the repetitive DNA sequences at the end of chromosomes. These telomeres play an important role in protection of genomic DNA from end-to-end fusions. Telomere maintenance and telomere attrition-associated senescence of endothelial and smooth muscle cells have been indicated to be part of the pathogenesis of degenerative vascular diseases. This systematic review provides an overview of telomeres, telomere-associated proteins and telomerase to the formation and progression of aneurysms of the thoracic ascending aorta. A better understanding of telomere regulation in the vascular pathology might provide new therapeutic approaches. Measurements of telomere length and telomerase activity could be potential prognostic biomarkers for increased risk of death in elderly patients suffering from an aortic aneurysm. |
format | Online Article Text |
id | pubmed-5795955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57959552018-02-09 Telomere Biology and Thoracic Aortic Aneurysm Aschacher, Thomas Salameh, Olivia Enzmann, Florian Messner, Barbara Bergmann, Michael Int J Mol Sci Review Ascending aortic aneurysms are mostly asymptomatic and present a great risk of aortic dissection or perforation. Consequently, ascending aortic aneurysms are a source of lethality with increased age. Biological aging results in progressive attrition of telomeres, which are the repetitive DNA sequences at the end of chromosomes. These telomeres play an important role in protection of genomic DNA from end-to-end fusions. Telomere maintenance and telomere attrition-associated senescence of endothelial and smooth muscle cells have been indicated to be part of the pathogenesis of degenerative vascular diseases. This systematic review provides an overview of telomeres, telomere-associated proteins and telomerase to the formation and progression of aneurysms of the thoracic ascending aorta. A better understanding of telomere regulation in the vascular pathology might provide new therapeutic approaches. Measurements of telomere length and telomerase activity could be potential prognostic biomarkers for increased risk of death in elderly patients suffering from an aortic aneurysm. MDPI 2017-12-21 /pmc/articles/PMC5795955/ /pubmed/29267201 http://dx.doi.org/10.3390/ijms19010003 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Aschacher, Thomas Salameh, Olivia Enzmann, Florian Messner, Barbara Bergmann, Michael Telomere Biology and Thoracic Aortic Aneurysm |
title | Telomere Biology and Thoracic Aortic Aneurysm |
title_full | Telomere Biology and Thoracic Aortic Aneurysm |
title_fullStr | Telomere Biology and Thoracic Aortic Aneurysm |
title_full_unstemmed | Telomere Biology and Thoracic Aortic Aneurysm |
title_short | Telomere Biology and Thoracic Aortic Aneurysm |
title_sort | telomere biology and thoracic aortic aneurysm |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795955/ https://www.ncbi.nlm.nih.gov/pubmed/29267201 http://dx.doi.org/10.3390/ijms19010003 |
work_keys_str_mv | AT aschacherthomas telomerebiologyandthoracicaorticaneurysm AT salameholivia telomerebiologyandthoracicaorticaneurysm AT enzmannflorian telomerebiologyandthoracicaorticaneurysm AT messnerbarbara telomerebiologyandthoracicaorticaneurysm AT bergmannmichael telomerebiologyandthoracicaorticaneurysm |