Cargando…
Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro
The present study depicted the role of silicon in limiting the hyperhydricity in shoot cultures of carnation through proteomic analysis. Four-week-old healthy shoot cultures of carnation “Purple Beauty” were sub-cultured on Murashige and Skoog medium followed with four treatments, viz. control (–Si/...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796000/ https://www.ncbi.nlm.nih.gov/pubmed/29295554 http://dx.doi.org/10.3390/ijms19010050 |
_version_ | 1783297409450770432 |
---|---|
author | Muneer, Sowbiya Wei, Hao Park, Yoo Gyeong Jeong, Hai Kyoung Jeong, Byoung Ryong |
author_facet | Muneer, Sowbiya Wei, Hao Park, Yoo Gyeong Jeong, Hai Kyoung Jeong, Byoung Ryong |
author_sort | Muneer, Sowbiya |
collection | PubMed |
description | The present study depicted the role of silicon in limiting the hyperhydricity in shoot cultures of carnation through proteomic analysis. Four-week-old healthy shoot cultures of carnation “Purple Beauty” were sub-cultured on Murashige and Skoog medium followed with four treatments, viz. control (–Si/–Hyperhydricity), hyperhydric with no silicon treatment (–Si/+Hyperhydricity), hyperhydric with silicon treatment (+Si/+Hyperhydricity), and only silicon treated with no hyperhydricity (+Si/–Hyperhydricity). Comparing to control morphological features of hyperhydric carnations showed significantly fragile, bushy and lustrous leaf nature, while Si supply restored these effects. Proteomic investigation revealed that approximately seventy protein spots were differentially expressed under Si and/or hyperhydric treatments and were either up- or downregulated in abundance depending on their functions. Most of the identified protein spots were related to stress responses, photosynthesis, and signal transduction. Proteomic results were further confirmed through immunoblots by selecting specific proteins such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), PsaA, and PsbA. Moreover, protein–protein interaction was also performed on differentially expressed protein spots using specific bioinformatic tools. In addition, stress markers were analyzed by histochemical localization of hydrogen peroxide (H(2)O(2)) and singlet oxygen (O(2)(1–)). In addition, the ultrastructure of chloroplasts in hyperhydric leaves significantly resulted in inefficiency of thylakoid lamella with the loss of grana but were recovered in silicon supplemented leaves. The proteomic study together with physiological analysis indicated that Si has a substantial role in upholding the hyperhydricity in in vitro grown carnation shoot cultures. |
format | Online Article Text |
id | pubmed-5796000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57960002018-02-09 Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro Muneer, Sowbiya Wei, Hao Park, Yoo Gyeong Jeong, Hai Kyoung Jeong, Byoung Ryong Int J Mol Sci Article The present study depicted the role of silicon in limiting the hyperhydricity in shoot cultures of carnation through proteomic analysis. Four-week-old healthy shoot cultures of carnation “Purple Beauty” were sub-cultured on Murashige and Skoog medium followed with four treatments, viz. control (–Si/–Hyperhydricity), hyperhydric with no silicon treatment (–Si/+Hyperhydricity), hyperhydric with silicon treatment (+Si/+Hyperhydricity), and only silicon treated with no hyperhydricity (+Si/–Hyperhydricity). Comparing to control morphological features of hyperhydric carnations showed significantly fragile, bushy and lustrous leaf nature, while Si supply restored these effects. Proteomic investigation revealed that approximately seventy protein spots were differentially expressed under Si and/or hyperhydric treatments and were either up- or downregulated in abundance depending on their functions. Most of the identified protein spots were related to stress responses, photosynthesis, and signal transduction. Proteomic results were further confirmed through immunoblots by selecting specific proteins such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), PsaA, and PsbA. Moreover, protein–protein interaction was also performed on differentially expressed protein spots using specific bioinformatic tools. In addition, stress markers were analyzed by histochemical localization of hydrogen peroxide (H(2)O(2)) and singlet oxygen (O(2)(1–)). In addition, the ultrastructure of chloroplasts in hyperhydric leaves significantly resulted in inefficiency of thylakoid lamella with the loss of grana but were recovered in silicon supplemented leaves. The proteomic study together with physiological analysis indicated that Si has a substantial role in upholding the hyperhydricity in in vitro grown carnation shoot cultures. MDPI 2017-12-24 /pmc/articles/PMC5796000/ /pubmed/29295554 http://dx.doi.org/10.3390/ijms19010050 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Muneer, Sowbiya Wei, Hao Park, Yoo Gyeong Jeong, Hai Kyoung Jeong, Byoung Ryong Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro |
title | Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro |
title_full | Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro |
title_fullStr | Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro |
title_full_unstemmed | Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro |
title_short | Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro |
title_sort | proteomic analysis reveals the dynamic role of silicon in alleviation of hyperhydricity in carnation grown in vitro |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796000/ https://www.ncbi.nlm.nih.gov/pubmed/29295554 http://dx.doi.org/10.3390/ijms19010050 |
work_keys_str_mv | AT muneersowbiya proteomicanalysisrevealsthedynamicroleofsiliconinalleviationofhyperhydricityincarnationgrowninvitro AT weihao proteomicanalysisrevealsthedynamicroleofsiliconinalleviationofhyperhydricityincarnationgrowninvitro AT parkyoogyeong proteomicanalysisrevealsthedynamicroleofsiliconinalleviationofhyperhydricityincarnationgrowninvitro AT jeonghaikyoung proteomicanalysisrevealsthedynamicroleofsiliconinalleviationofhyperhydricityincarnationgrowninvitro AT jeongbyoungryong proteomicanalysisrevealsthedynamicroleofsiliconinalleviationofhyperhydricityincarnationgrowninvitro |