Cargando…
Assessing the Performances of Protein Function Prediction Algorithms from the Perspectives of Identification Accuracy and False Discovery Rate
The function of a protein is of great interest in the cutting-edge research of biological mechanisms, disease development and drug/target discovery. Besides experimental explorations, a variety of computational methods have been designed to predict protein function. Among these in silico methods, th...
Autores principales: | Yu, Chun Yan, Li, Xiao Xu, Yang, Hong, Li, Ying Hong, Xue, Wei Wei, Chen, Yu Zong, Tao, Lin, Zhu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796132/ https://www.ncbi.nlm.nih.gov/pubmed/29316706 http://dx.doi.org/10.3390/ijms19010183 |
Ejemplares similares
-
False discovery rates in spectral identification
por: Jeong, Kyowon, et al.
Publicado: (2012) -
Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning
por: Hong, Jiajun, et al.
Publicado: (2019) -
Testing Jumps via False Discovery Rate Control
por: Yen, Yu-Min
Publicado: (2013) -
Controlling the Rate of GWAS False Discoveries
por: Brzyski, Damian, et al.
Publicado: (2017) -
Discrete False-Discovery Rate Improves Identification of Differentially Abundant Microbes
por: Jiang, Lingjing, et al.
Publicado: (2017)