Cargando…
Transcriptional Regulation by CpG Sites Methylation in the Core Promoter Region of the Bovine SIX1 Gene: Roles of Histone H4 and E2F2
DNA methylation is a major epigenetic modification of the genome and has an essential role in muscle development. The SIX1 gene is thought to play a principal role in mediating skeletal muscle development. In the present study, we determined that bovine SIX1 expression levels were significantly high...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796162/ https://www.ncbi.nlm.nih.gov/pubmed/29337851 http://dx.doi.org/10.3390/ijms19010213 |
_version_ | 1783297447543439360 |
---|---|
author | Wei, Dawei Li, Anning Zhao, Chunping Wang, Hongbao Mei, Chugang Khan, Rajwali Zan, Linsen |
author_facet | Wei, Dawei Li, Anning Zhao, Chunping Wang, Hongbao Mei, Chugang Khan, Rajwali Zan, Linsen |
author_sort | Wei, Dawei |
collection | PubMed |
description | DNA methylation is a major epigenetic modification of the genome and has an essential role in muscle development. The SIX1 gene is thought to play a principal role in mediating skeletal muscle development. In the present study, we determined that bovine SIX1 expression levels were significantly higher in the fetal bovine group (FB) and in undifferentiated Qinchuan cattle muscle cells (QCMCs) than in the adult bovine group (AB) and in differentiated QCMCs. Moreover, a bisulfite sequencing polymerase chain reaction (BSP) analysis of DNA methylation levels showed that three CpG sites in the core promoter region (−216/−28) of the bovine SIX1 gene exhibited significantly higher DNA methylation levels in the AB and differentiated QCMCs groups. In addition, we found that DNA methylation of SIX1 core promoter in vitro obviously influences the promoter activities. An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay, in combination with site-directed mutation and siRNA interference, demonstrated that histone H4 and E2F2 bind to the −216/−28 region and play important roles in SIX1 methylation regulation during development. The results of this study provide the foundation for a better understanding of the regulation of bovine SIX1 expression via methylation and muscle developmental in beef cattle. |
format | Online Article Text |
id | pubmed-5796162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-57961622018-02-09 Transcriptional Regulation by CpG Sites Methylation in the Core Promoter Region of the Bovine SIX1 Gene: Roles of Histone H4 and E2F2 Wei, Dawei Li, Anning Zhao, Chunping Wang, Hongbao Mei, Chugang Khan, Rajwali Zan, Linsen Int J Mol Sci Article DNA methylation is a major epigenetic modification of the genome and has an essential role in muscle development. The SIX1 gene is thought to play a principal role in mediating skeletal muscle development. In the present study, we determined that bovine SIX1 expression levels were significantly higher in the fetal bovine group (FB) and in undifferentiated Qinchuan cattle muscle cells (QCMCs) than in the adult bovine group (AB) and in differentiated QCMCs. Moreover, a bisulfite sequencing polymerase chain reaction (BSP) analysis of DNA methylation levels showed that three CpG sites in the core promoter region (−216/−28) of the bovine SIX1 gene exhibited significantly higher DNA methylation levels in the AB and differentiated QCMCs groups. In addition, we found that DNA methylation of SIX1 core promoter in vitro obviously influences the promoter activities. An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay, in combination with site-directed mutation and siRNA interference, demonstrated that histone H4 and E2F2 bind to the −216/−28 region and play important roles in SIX1 methylation regulation during development. The results of this study provide the foundation for a better understanding of the regulation of bovine SIX1 expression via methylation and muscle developmental in beef cattle. MDPI 2018-01-16 /pmc/articles/PMC5796162/ /pubmed/29337851 http://dx.doi.org/10.3390/ijms19010213 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wei, Dawei Li, Anning Zhao, Chunping Wang, Hongbao Mei, Chugang Khan, Rajwali Zan, Linsen Transcriptional Regulation by CpG Sites Methylation in the Core Promoter Region of the Bovine SIX1 Gene: Roles of Histone H4 and E2F2 |
title | Transcriptional Regulation by CpG Sites Methylation in the Core Promoter Region of the Bovine SIX1 Gene: Roles of Histone H4 and E2F2 |
title_full | Transcriptional Regulation by CpG Sites Methylation in the Core Promoter Region of the Bovine SIX1 Gene: Roles of Histone H4 and E2F2 |
title_fullStr | Transcriptional Regulation by CpG Sites Methylation in the Core Promoter Region of the Bovine SIX1 Gene: Roles of Histone H4 and E2F2 |
title_full_unstemmed | Transcriptional Regulation by CpG Sites Methylation in the Core Promoter Region of the Bovine SIX1 Gene: Roles of Histone H4 and E2F2 |
title_short | Transcriptional Regulation by CpG Sites Methylation in the Core Promoter Region of the Bovine SIX1 Gene: Roles of Histone H4 and E2F2 |
title_sort | transcriptional regulation by cpg sites methylation in the core promoter region of the bovine six1 gene: roles of histone h4 and e2f2 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796162/ https://www.ncbi.nlm.nih.gov/pubmed/29337851 http://dx.doi.org/10.3390/ijms19010213 |
work_keys_str_mv | AT weidawei transcriptionalregulationbycpgsitesmethylationinthecorepromoterregionofthebovinesix1generolesofhistoneh4ande2f2 AT lianning transcriptionalregulationbycpgsitesmethylationinthecorepromoterregionofthebovinesix1generolesofhistoneh4ande2f2 AT zhaochunping transcriptionalregulationbycpgsitesmethylationinthecorepromoterregionofthebovinesix1generolesofhistoneh4ande2f2 AT wanghongbao transcriptionalregulationbycpgsitesmethylationinthecorepromoterregionofthebovinesix1generolesofhistoneh4ande2f2 AT meichugang transcriptionalregulationbycpgsitesmethylationinthecorepromoterregionofthebovinesix1generolesofhistoneh4ande2f2 AT khanrajwali transcriptionalregulationbycpgsitesmethylationinthecorepromoterregionofthebovinesix1generolesofhistoneh4ande2f2 AT zanlinsen transcriptionalregulationbycpgsitesmethylationinthecorepromoterregionofthebovinesix1generolesofhistoneh4ande2f2 |