Cargando…

Genome-Wide Identification, Expression, and Functional Analysis of the Alkaline/Neutral Invertase Gene Family in Pepper

Alkaline/neutral invertase (NINV) proteins irreversibly cleave sucrose into fructose and glucose, and play important roles in carbohydrate metabolism and plant development. To investigate the role of NINVs in the development of pepper fruits, seven NINV genes (CaNINV1–7) were identified. Phylogeneti...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Long-Bin, Yao, Yuan, He, Huang, Qin, Yu-Ling, Liu, Zi-Ji, Liu, Wei-Xia, Qi, Zhi-Qiang, Yang, Li-Jia, Cao, Zhen-Mu, Yang, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796173/
https://www.ncbi.nlm.nih.gov/pubmed/29324672
http://dx.doi.org/10.3390/ijms19010224
Descripción
Sumario:Alkaline/neutral invertase (NINV) proteins irreversibly cleave sucrose into fructose and glucose, and play important roles in carbohydrate metabolism and plant development. To investigate the role of NINVs in the development of pepper fruits, seven NINV genes (CaNINV1–7) were identified. Phylogenetic analysis revealed that the CaNINV family could be divided into α and β groups. CaNINV1–6 had typical conserved regions and similar protein structures to the NINVs of other plants, while CaNINV7 lacked amino acid sequences at the C-terminus and N-terminus ends. An expression analysis of the CaNINV genes in different tissues demonstrated that CaNINV5 is the dominant NINV in all the examined tissues (root, stem, leaf, bud, flower, and developmental pepper fruits stage). Notably, the expression of CaNINV5 was found to gradually increase at the pre-breaker stages, followed by a decrease at the breaker stages, while it maintained a low level at the post-breaker stages. Furthermore, the invertase activity of CaNINV5 was identified by functional complementation of the invertase-deficient yeast strain SEY2102, and the optimum pH of CaNINV5 was found to be ~7.5. The gene expression and enzymatic activity of CaNINV5 suggest that it might be the main NINV enzyme for hydrolysis of sucrose during pepper fruit development.