Cargando…
A Mixed Application of Geographically Weighted Regression and Unsupervised Classification for Analyzing Latex Yield Variability in Yunnan, China
This paper introduces a mixed method approach for analyzing the determinants of natural latex yields and the associated spatial variations and identifying the most suitable regions for producing latex. Geographically Weighted Regressions (GWR) and Iterative Self-Organizing Data Analysis Technique (I...
Autores principales: | Kim, Oh Seok, Nugent, Jeffrey B., Yi, Zhuang-Fang, Newell, Joshua P., Curtis, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796418/ https://www.ncbi.nlm.nih.gov/pubmed/29399301 http://dx.doi.org/10.3390/f8050162 |
Ejemplares similares
-
Geographically Weighted Method Integrated with Logistic Regression for Analyzing Spatially Varying Accuracy Measures of Remote Sensing Image Classification
por: Mishra, Varun Narayan, et al.
Publicado: (2021) -
Needle and syringe programs in Yunnan, China yield health and financial return
por: Zhang, Lei, et al.
Publicado: (2011) -
Analyzing Age-Related Macular Degeneration Progression in Patients with Geographic Atrophy Using Joint Autoencoders for Unsupervised Change Detection
por: Dupont, Guillaume, et al.
Publicado: (2020) -
Brassinosteroids Regulate the Water Deficit and Latex Yield of Rubber Trees
por: Guo, Bingbing, et al.
Publicado: (2023) -
Assessing the geographic specificity of pH prediction by classification and regression trees
por: Egelberg, Jacob, et al.
Publicado: (2021)