Cargando…
An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction
The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two pro...
Autores principales: | Li, Yiyang, Jin, Weiqi, Zhu, Jin, Zhang, Xu, Li, Shuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796467/ https://www.ncbi.nlm.nih.gov/pubmed/29342857 http://dx.doi.org/10.3390/s18010211 |
Ejemplares similares
-
A Method of Sky Ripple Residual Nonuniformity Reduction for a Cooled Infrared Imager and Hardware Implementation
por: Li, Yiyang, et al.
Publicado: (2017) -
Deep HDR Deghosting by Motion-Attention Fusion Network
por: Xiao, Yifan, et al.
Publicado: (2022) -
Reversible Jump MCMC for Deghosting in MSPSR Systems †
por: Kulmon, Pavel
Publicado: (2021) -
Robust Approach for Nonuniformity Correction in Infrared Focal Plane Array
por: Boutemedjet, Ayoub, et al.
Publicado: (2016) -
Visible-Image-Assisted Nonuniformity Correction of Infrared Images Using the GAN with SEBlock
por: Mou, Xingang, et al.
Publicado: (2023)