Cargando…
Automated cell cycle and cell size measurements for single-cell gene expression studies
OBJECTIVES: Recent rise of single-cell studies revealed the importance of understanding the role of cell-to-cell variability, especially at the transcriptomic level. One of the numerous sources of cell-to-cell variation in gene expression is the heterogeneity in cell proliferation state. In order to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796519/ https://www.ncbi.nlm.nih.gov/pubmed/29391045 http://dx.doi.org/10.1186/s13104-018-3195-y |
Sumario: | OBJECTIVES: Recent rise of single-cell studies revealed the importance of understanding the role of cell-to-cell variability, especially at the transcriptomic level. One of the numerous sources of cell-to-cell variation in gene expression is the heterogeneity in cell proliferation state. In order to identify how cell cycle and cell size influences gene expression variability at the single-cell level, we provide an universal and automatic toxic-free label method, compatible with single-cell high-throughput RT-qPCR. The method consists of isolating cells after a double-stained, analyzing their morphological parameters and performing a transcriptomic analysis on the same identified cells. RESULTS: This led to an unbiased gene expression analysis and could be also used for improving single-cell tracking and imaging when combined with cell isolation. As an application for this technique, we showed that cell-to-cell variability in chicken erythroid progenitors was negligibly influenced by cell size nor cell cycle. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13104-018-3195-y) contains supplementary material, which is available to authorized users. |
---|