Cargando…

An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells

Chromatin regulators control cellular differentiation by orchestrating dynamic developmental gene expression programs, and hence, malfunctions in the regulation of chromatin state contribute to both developmental disorders and disease state. Mll4 (Kmt2d), a member of the COMPASS (COMplex of Proteins...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Kaixiang, Collings, Clayton K., Morgan, Marc A., Marshall, Stacy A., Rendleman, Emily J., Ozark, Patrick A., Smith, Edwin R., Shilatifard, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796793/
https://www.ncbi.nlm.nih.gov/pubmed/29404406
http://dx.doi.org/10.1126/sciadv.aap8747
_version_ 1783297557807497216
author Cao, Kaixiang
Collings, Clayton K.
Morgan, Marc A.
Marshall, Stacy A.
Rendleman, Emily J.
Ozark, Patrick A.
Smith, Edwin R.
Shilatifard, Ali
author_facet Cao, Kaixiang
Collings, Clayton K.
Morgan, Marc A.
Marshall, Stacy A.
Rendleman, Emily J.
Ozark, Patrick A.
Smith, Edwin R.
Shilatifard, Ali
author_sort Cao, Kaixiang
collection PubMed
description Chromatin regulators control cellular differentiation by orchestrating dynamic developmental gene expression programs, and hence, malfunctions in the regulation of chromatin state contribute to both developmental disorders and disease state. Mll4 (Kmt2d), a member of the COMPASS (COMplex of Proteins ASsociated with Set1) protein family that implements histone H3 lysine 4 monomethylation (H3K4me1) at enhancers, is essential for embryonic development and functions as a pancancer tumor suppressor. We define the roles of Mll4/COMPASS and its catalytic activity in the maintenance and exit of ground-state pluripotency in murine embryonic stem cells (ESCs). Mll4 is required for ESC to exit the naive pluripotent state; however, its intrinsic catalytic activity is dispensable for this process. The depletion of the H3K4 demethylase Lsd1 (Kdm1a) restores the ability of Mll4 null ESCs to transition from naive to primed pluripotency. Thus, we define an opposing regulatory axis, wherein Lsd1 and associated co-repressors directly repress Mll4-activated gene targets. This finding has broad reaching implications for human developmental syndromes and the treatment of tumors carrying Mll4 mutations.
format Online
Article
Text
id pubmed-5796793
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-57967932018-02-05 An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells Cao, Kaixiang Collings, Clayton K. Morgan, Marc A. Marshall, Stacy A. Rendleman, Emily J. Ozark, Patrick A. Smith, Edwin R. Shilatifard, Ali Sci Adv Research Articles Chromatin regulators control cellular differentiation by orchestrating dynamic developmental gene expression programs, and hence, malfunctions in the regulation of chromatin state contribute to both developmental disorders and disease state. Mll4 (Kmt2d), a member of the COMPASS (COMplex of Proteins ASsociated with Set1) protein family that implements histone H3 lysine 4 monomethylation (H3K4me1) at enhancers, is essential for embryonic development and functions as a pancancer tumor suppressor. We define the roles of Mll4/COMPASS and its catalytic activity in the maintenance and exit of ground-state pluripotency in murine embryonic stem cells (ESCs). Mll4 is required for ESC to exit the naive pluripotent state; however, its intrinsic catalytic activity is dispensable for this process. The depletion of the H3K4 demethylase Lsd1 (Kdm1a) restores the ability of Mll4 null ESCs to transition from naive to primed pluripotency. Thus, we define an opposing regulatory axis, wherein Lsd1 and associated co-repressors directly repress Mll4-activated gene targets. This finding has broad reaching implications for human developmental syndromes and the treatment of tumors carrying Mll4 mutations. American Association for the Advancement of Science 2018-01-31 /pmc/articles/PMC5796793/ /pubmed/29404406 http://dx.doi.org/10.1126/sciadv.aap8747 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Cao, Kaixiang
Collings, Clayton K.
Morgan, Marc A.
Marshall, Stacy A.
Rendleman, Emily J.
Ozark, Patrick A.
Smith, Edwin R.
Shilatifard, Ali
An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells
title An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells
title_full An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells
title_fullStr An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells
title_full_unstemmed An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells
title_short An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells
title_sort mll4/compass-lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796793/
https://www.ncbi.nlm.nih.gov/pubmed/29404406
http://dx.doi.org/10.1126/sciadv.aap8747
work_keys_str_mv AT caokaixiang anmll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT collingsclaytonk anmll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT morganmarca anmll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT marshallstacya anmll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT rendlemanemilyj anmll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT ozarkpatricka anmll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT smithedwinr anmll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT shilatifardali anmll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT caokaixiang mll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT collingsclaytonk mll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT morganmarca mll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT marshallstacya mll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT rendlemanemilyj mll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT ozarkpatricka mll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT smithedwinr mll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells
AT shilatifardali mll4compasslsd1epigeneticaxisgovernsenhancerfunctionandpluripotencytransitioninembryonicstemcells