Cargando…

AMPK activation by Tanshinone IIA protects neuronal cells from oxygen-glucose deprivation

The current study tested the potential neuroprotective function of Tanshinone IIA (ThIIA) in neuronal cells with oxygen-glucose deprivation (ODG) and re-oxygenation (OGDR). In SH-SY5Y neuronal cells and primary murine cortical neurons, ThIIA pre-treatment attenuated OGDR-induced viability reduction...

Descripción completa

Detalles Bibliográficos
Autores principales: Weng, Yingfeng, Lin, Jixian, Liu, Hui, Wu, Hui, Yan, Zhimin, Zhao, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796991/
https://www.ncbi.nlm.nih.gov/pubmed/29435120
http://dx.doi.org/10.18632/oncotarget.23391
Descripción
Sumario:The current study tested the potential neuroprotective function of Tanshinone IIA (ThIIA) in neuronal cells with oxygen-glucose deprivation (ODG) and re-oxygenation (OGDR). In SH-SY5Y neuronal cells and primary murine cortical neurons, ThIIA pre-treatment attenuated OGDR-induced viability reduction and apoptosis. Further, OGDR-induced mitochondrial depolarization, reactive oxygen species production, lipid peroxidation and DNA damages in neuronal cells were significantly attenuated by ThIIA. ThIIA activated AMP-activated protein kinase (AMPK) signaling, which was essential for neuroprotection against OGDR. AMPKα1 knockdown or complete knockout in SH-SY5Y cells abolished ThIIA-induced AMPK activation and neuroprotection against OGDR. Further studies found that ThIIA up-regulated microRNA-135b to downregulate the AMPK phosphatase Ppm1e. Notably, knockdown of Ppm1e by targeted shRNA or forced microRNA-135b expression also activated AMPK and protected SH-SY5Y cells from OGDR. Together, AMPK activation by ThIIA protects neuronal cells from OGDR. microRNA-135b-mediated silence of Ppm1e could be the key mechanism of AMPK activation by ThIIA.