Cargando…

Upregulation of LncRNA BCYRN1 promotes tumor progression and enhances EpCAM expression in gastric carcinoma

Brain cytoplasmic RNA 1 (BCYRN1), along non-coding RNA, plays a critical role in various diseases, including some cancers. However, the expression of BCYRN1 and its roles in gastric carcinoma (GC) still remain unidentified. Thus, this study employed RT-qPCR to detect expression of BCYRN1 in 85 paire...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Hao, Yang, Xiaomin, Yang, Yongmei, Zhang, Xiaoyu, Zhao, Rui, Wei, Ran, Zhang, Xin, Zhang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797017/
https://www.ncbi.nlm.nih.gov/pubmed/29435146
http://dx.doi.org/10.18632/oncotarget.23585
Descripción
Sumario:Brain cytoplasmic RNA 1 (BCYRN1), along non-coding RNA, plays a critical role in various diseases, including some cancers. However, the expression of BCYRN1 and its roles in gastric carcinoma (GC) still remain unidentified. Thus, this study employed RT-qPCR to detect expression of BCYRN1 in 85 paired GC samples and adjacent normal tissues, and performed in vitro studies to explore effects of BCYRN1 in GC cells on cell proliferation, apoptosis and migration. We found BCYRN1 was significantly upregulated in GC samples, and its expression was positively correlated with advanced TNM stage (p = 0.0012) and tumor size (p = 0.027). Functionally, BCYRN1 knockdown by siRNA could inhibit cell proliferation, induce G1/G0 cell cycle arrest, increase apoptosis and impair migratory ability of AGS cells. Moreover, the results of RT-qPCR and western blotting indicated that knockdown of BCYRN1 notably decreased the expression of epithelial cell adhesion molecules (EpCAM). Otherwise, overexpression of BCYRN1 in GC cells (BGC-823 and SGC-7901) could reverse the effects of BCYRN1 knockdown. Taken together, our data indicate for the first time that BCYRN1 acts as an oncogenic lncRNA in GC progression and may be a potential therapeutic target in GC.