Cargando…
Author Correction: Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
Autores principales: | Trebeschi, Stefano, van Griethuysen, Joost J. M., Lambregts, Doenja M. J., Lahaye, Max J., Parmar, Chintan, Bakers, Frans C. H., Peters, Nicky H. G. M., Beets-Tan, Regina G. H., Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797196/ https://www.ncbi.nlm.nih.gov/pubmed/29396399 http://dx.doi.org/10.1038/s41598-018-20029-5 |
Ejemplares similares
-
Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
por: Trebeschi, Stefano, et al.
Publicado: (2017) -
Development and multicenter validation of a multiparametric imaging model to predict treatment response in rectal cancer
por: Schurink, Niels W., et al.
Publicado: (2023) -
Measuring the apparent diffusion coefficient in primary rectal tumors: is there a benefit in performing histogram analyses?
por: van Heeswijk, Miriam M., et al.
Publicado: (2017) -
A decade of multi-modality PET and MR imaging in abdominal oncology
por: Min, Lisa A., et al.
Publicado: (2021) -
Response evaluation after neoadjuvant treatment for rectal cancer using modern MR imaging: a pictorial review
por: Lambregts, Doenja M. J., et al.
Publicado: (2019)