Cargando…
Embedding Anatomical or Functional Knowledge in Whole-Brain Multiple Kernel Learning Models
Pattern recognition models have been increasingly applied to neuroimaging data over the last two decades. These applications have ranged from cognitive neuroscience to clinical problems. A common limitation of these approaches is that they do not incorporate previous knowledge about the brain struct...
Autores principales: | Schrouff, Jessica, Monteiro, J. M., Portugal, L., Rosa, M. J., Phillips, C., Mourão-Miranda, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797202/ https://www.ncbi.nlm.nih.gov/pubmed/29297140 http://dx.doi.org/10.1007/s12021-017-9347-8 |
Ejemplares similares
-
Decoding intracranial EEG data with multiple kernel learning method
por: Schrouff, Jessica, et al.
Publicado: (2016) -
Multiple-kernel learning for genomic data mining and prediction
por: Wilson, Christopher M., et al.
Publicado: (2019) -
Tools for knowledge acquisition within the NeuroScholar system and their application to anatomical tract-tracing data
por: Burns, Gully APC, et al.
Publicado: (2006) -
Jdpd: an open java simulation kernel for molecular fragment dissipative particle dynamics
por: van den Broek, Karina, et al.
Publicado: (2018) -
K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space
por: Bylesjö, Max, et al.
Publicado: (2008)