Cargando…

A Topological Representation of Branching Neuronal Morphologies

Many biological systems consist of branching structures that exhibit a wide variety of shapes. Our understanding of their systematic roles is hampered from the start by the lack of a fundamental means of standardizing the description of complex branching patterns, such as those of neuronal trees. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanari, Lida, Dłotko, Paweł, Scolamiero, Martina, Levi, Ran, Shillcock, Julian, Hess, Kathryn, Markram, Henry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797226/
https://www.ncbi.nlm.nih.gov/pubmed/28975511
http://dx.doi.org/10.1007/s12021-017-9341-1
Descripción
Sumario:Many biological systems consist of branching structures that exhibit a wide variety of shapes. Our understanding of their systematic roles is hampered from the start by the lack of a fundamental means of standardizing the description of complex branching patterns, such as those of neuronal trees. To solve this problem, we have invented the Topological Morphology Descriptor (TMD), a method for encoding the spatial structure of any tree as a “barcode”, a unique topological signature. As opposed to traditional morphometrics, the TMD couples the topology of the branches with their spatial extents by tracking their topological evolution in 3-dimensional space. We prove that neuronal trees, as well as stochastically generated trees, can be accurately categorized based on their TMD profiles. The TMD retains sufficient global and local information to create an unbiased benchmark test for their categorization and is able to quantify and characterize the structural differences between distinct morphological groups. The use of this mathematically rigorous method will advance our understanding of the anatomy and diversity of branching morphologies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s12021-017-9341-1) contains supplementary material, which is available to authorized users.