Cargando…

Foxg1 deletion impairs the development of the epithalamus

The epithalamus, which is dorsal to the thalamus, consists of the habenula, pineal gland and third ventricle choroid plexus and plays important roles in the stress response and sleep–wake cycle in vertebrates. During development, the epithalamus arises from the most dorsal part of prosomere 2. Howev...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bin, Zhou, Kaixing, Wu, Xiaojing, Zhao, Chunjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797387/
https://www.ncbi.nlm.nih.gov/pubmed/29394901
http://dx.doi.org/10.1186/s13041-018-0350-2
Descripción
Sumario:The epithalamus, which is dorsal to the thalamus, consists of the habenula, pineal gland and third ventricle choroid plexus and plays important roles in the stress response and sleep–wake cycle in vertebrates. During development, the epithalamus arises from the most dorsal part of prosomere 2. However, the mechanism underlying epithalamic development remains largely unknown. Foxg1 is critical for the development of the telencephalon, but its role in diencephalic development has been under-investigated. Patients suffering from FOXG1-related disorders exhibit severe anxiety, sleep disturbance and choroid plexus cysts, indicating that Foxg1 likely plays a role in epithalamic development. In this study, we identified the specific expression of Foxg1 in the developing epithalamus. Using a “self-deletion” approach, we found that the habenula significantly expanded and included an increased number of habenular subtype neurons. The innervations, particularly the habenular commissure, were severely impaired. Meanwhile, the Foxg1 mutants exhibited a reduced pineal gland and more branched choroid plexus. After ablation of Foxg1 no obvious changes in Shh and Fgf signalling were observed, suggesting that Foxg1 regulates the development of the epithalamus without the involvement of Shh and Fgfs. Our findings provide new insights into the regulation of the development of the epithalamus.