Cargando…

A study on periostin involvement in the pathophysiology of canine atopic skin

Atopic dermatitis (AD) is a chronic, pruritic, and allergic skin disease in humans and animals, particularly dogs. Canine AD (cAD) has received attention as a spontaneous atopic animal model because domesticated dogs inhabit a human environment, and cAD shares several clinicopathological features wi...

Descripción completa

Detalles Bibliográficos
Autores principales: MINESHIGE, Takayuki, KAMIIE, Junichi, SUGAHARA, Go, SHIROTA, Kinji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Veterinary Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797867/
https://www.ncbi.nlm.nih.gov/pubmed/29176263
http://dx.doi.org/10.1292/jvms.17-0453
Descripción
Sumario:Atopic dermatitis (AD) is a chronic, pruritic, and allergic skin disease in humans and animals, particularly dogs. Canine AD (cAD) has received attention as a spontaneous atopic animal model because domesticated dogs inhabit a human environment, and cAD shares several clinicopathological features with human AD (hAD). In hAD, periostin (PO) is suggested to play a critical role in the enhancement and chronicity of allergic skin inflammation; however, PO involvement in the pathogenesis of cAD is unknown. Here we aimed to clarify PO involvement in the pathophysiology of cAD and focused on the inducing factor and function of PO in canine atopic skin. Using double-labeled in situ hybridization (ISH), interleukin (IL)-13 mRNA-positive cells were detected near the keratinocytes and dermal fibroblasts expressing PO mRNA in atopic skin. Using an in vitro assay, IL-13 induced PO gene expression in both canine dermal fibroblasts and keratinocytes. PO enhanced in vitro growth of canine keratinocytes. Moreover, among PO-induced genes in cultured canine keratinocytes detected using a microarray, we identified IL-25 as a possible mediator in canine atopic skin. In addition, real time polymerase chain reaction (PCR) analysis revealed upregulation of IL-25 gene expression in PO-stimulated keratinocytes. These data suggest that IL-13 possibly derived from T helper 2 (Th2) cells stimulates PO production in both keratinocytes and fibroblasts, and then PO may play a critical role in the pathophysiology of cAD, particularly in the enhancement and chronicity of skin lesions via IL-25.