Cargando…

A fully absorbable biomimetic polymeric micelle loaded with cisplatin as drug carrier for cancer therapy

cis-dichlorodiammineplatinum(II) (CDDP)-loaded polymeric micelles for cancer therapy have been developed to reduce the serious side effects of cisplatin CDDP. Herein, polymeric micelles incorporated with cisplatin are prepared based on the complexation between CDDP and hydrophilic poly ((L)-glutamic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuang, Weihua, Ma, Boxuan, Liu, Gongyan, Chen, Xiaobing, Wang, Yunbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5798127/
https://www.ncbi.nlm.nih.gov/pubmed/29423262
http://dx.doi.org/10.1093/rb/rbx012
Descripción
Sumario:cis-dichlorodiammineplatinum(II) (CDDP)-loaded polymeric micelles for cancer therapy have been developed to reduce the serious side effects of cisplatin CDDP. Herein, polymeric micelles incorporated with cisplatin are prepared based on the complexation between CDDP and hydrophilic poly ((L)-glutamic acid)-b-poly (2-methacryloyloxyethyl phosphorylcholine) (PLG-b-PMPC) diblock copolymers. These CDDP-loaded micelles possess an average size of 91 nm with narrow distribution, providing remarkable stability in media containing proteins. The release of CDDP from the micelles is faster at pH 5.0 and pH 6.0 than that at pH 7.4 and in a sustained manner without initial burst release. In addition, there is almost no difference in cellular uptake between these CDDP-loaded micelles and free CDDP. Moreover, in vitro cytotoxicity test shows they possess high efficacy to kill 4T1 cells as compared with free drug. Thus, PLG-b-PMPC copolymer might be a promising carrier for CDDP incorporating in cancer therapy.