Cargando…

Low-energy Bluetooth for detecting real-world penetrance of bystander naloxone kits: a pilot study

Opioid overdose is a growing public health emergency in the United States. The antidote naloxone must be administered rapidly after opioid overdose to prevent death. Bystander or “take-home” naloxone programs distribute naloxone to opioid users and other community members to increase naloxone availa...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, Jeffrey T., Chapman, Brittany P., Boyle, Katherine L., Boyer, Edward W., Chai, Peter R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5798450/
https://www.ncbi.nlm.nih.gov/pubmed/29416443
Descripción
Sumario:Opioid overdose is a growing public health emergency in the United States. The antidote naloxone must be administered rapidly after opioid overdose to prevent death. Bystander or “take-home” naloxone programs distribute naloxone to opioid users and other community members to increase naloxone availability at the time of overdose. However, data describing the natural history of take-home naloxone in the hands of at-risk individuals is lacking. To understand patterns of naloxone uptake in at-risk users, we developed a smart naloxone kit that uses low-energy Bluetooth (BLE) to unobtrusively detect the transit of naloxone through a hospital campus. In this paper, we describe development of the smart naloxone kit and results from the first 10 participants in our pilot study.