Cargando…
Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties
Stenotrophomonas maltophilia is found ubiquitously in the environment and is an important emerging nosocomial pathogen. S. maltophilia has been recently described as an Amoebae-Resistant Bacteria (ARB) that exists as part of the microbiome of various free-living amoebae (FLA) from waters. Co-culture...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5798789/ https://www.ncbi.nlm.nih.gov/pubmed/29401523 http://dx.doi.org/10.1371/journal.pone.0192308 |
_version_ | 1783297901618790400 |
---|---|
author | Denet, Elodie Vasselon, Valentin Burdin, Béatrice Nazaret, Sylvie Favre-Bonté, Sabine |
author_facet | Denet, Elodie Vasselon, Valentin Burdin, Béatrice Nazaret, Sylvie Favre-Bonté, Sabine |
author_sort | Denet, Elodie |
collection | PubMed |
description | Stenotrophomonas maltophilia is found ubiquitously in the environment and is an important emerging nosocomial pathogen. S. maltophilia has been recently described as an Amoebae-Resistant Bacteria (ARB) that exists as part of the microbiome of various free-living amoebae (FLA) from waters. Co-culture approaches with Vermamoeba vermiformis demonstrated the ability of this bacterium to resist amoebal digestion. In the present study, we assessed the survival and growth of six environmental and one clinical S. maltophilia strains within two amoebal species: Acanthamoeba castellanii and Willaertia magna. We also evaluated bacterial virulence properties using the social amoeba Dictyostelium discoideum. A co-culture approach was carried out over 96 hours and the abundance of S. maltophilia cells was measured using quantitative PCR and culture approach. The presence of bacteria inside the amoeba was confirmed using confocal microscopy. Our results showed that some S. maltophilia strains were able to multiply within both amoebae and exhibited multiplication rates up to 17.5 and 1166 for A. castellanii and W. magna, respectively. In contrast, some strains were unable to multiply in either amoeba. Out of the six environmental S. maltophilia strains tested, one was found to be virulent. Surprisingly, this strain previously isolated from a soil amoeba, Micriamoeba, was unable to infect both amoebal species tested. We further performed an assay with a mutant strain of S. maltophilia BurA1 lacking the efflux pump ebyCAB gene and found the mutant to be more virulent and more efficient for intra-amoebal multiplication. Overall, the results obtained strongly indicated that free-living amoebae could be an important ecological niche for S. maltophilia. |
format | Online Article Text |
id | pubmed-5798789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57987892018-02-23 Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties Denet, Elodie Vasselon, Valentin Burdin, Béatrice Nazaret, Sylvie Favre-Bonté, Sabine PLoS One Research Article Stenotrophomonas maltophilia is found ubiquitously in the environment and is an important emerging nosocomial pathogen. S. maltophilia has been recently described as an Amoebae-Resistant Bacteria (ARB) that exists as part of the microbiome of various free-living amoebae (FLA) from waters. Co-culture approaches with Vermamoeba vermiformis demonstrated the ability of this bacterium to resist amoebal digestion. In the present study, we assessed the survival and growth of six environmental and one clinical S. maltophilia strains within two amoebal species: Acanthamoeba castellanii and Willaertia magna. We also evaluated bacterial virulence properties using the social amoeba Dictyostelium discoideum. A co-culture approach was carried out over 96 hours and the abundance of S. maltophilia cells was measured using quantitative PCR and culture approach. The presence of bacteria inside the amoeba was confirmed using confocal microscopy. Our results showed that some S. maltophilia strains were able to multiply within both amoebae and exhibited multiplication rates up to 17.5 and 1166 for A. castellanii and W. magna, respectively. In contrast, some strains were unable to multiply in either amoeba. Out of the six environmental S. maltophilia strains tested, one was found to be virulent. Surprisingly, this strain previously isolated from a soil amoeba, Micriamoeba, was unable to infect both amoebal species tested. We further performed an assay with a mutant strain of S. maltophilia BurA1 lacking the efflux pump ebyCAB gene and found the mutant to be more virulent and more efficient for intra-amoebal multiplication. Overall, the results obtained strongly indicated that free-living amoebae could be an important ecological niche for S. maltophilia. Public Library of Science 2018-02-05 /pmc/articles/PMC5798789/ /pubmed/29401523 http://dx.doi.org/10.1371/journal.pone.0192308 Text en © 2018 Denet et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Denet, Elodie Vasselon, Valentin Burdin, Béatrice Nazaret, Sylvie Favre-Bonté, Sabine Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties |
title | Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties |
title_full | Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties |
title_fullStr | Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties |
title_full_unstemmed | Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties |
title_short | Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties |
title_sort | survival and growth of stenotrophomonas maltophilia in free-living amoebae (fla) and bacterial virulence properties |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5798789/ https://www.ncbi.nlm.nih.gov/pubmed/29401523 http://dx.doi.org/10.1371/journal.pone.0192308 |
work_keys_str_mv | AT denetelodie survivalandgrowthofstenotrophomonasmaltophiliainfreelivingamoebaeflaandbacterialvirulenceproperties AT vasselonvalentin survivalandgrowthofstenotrophomonasmaltophiliainfreelivingamoebaeflaandbacterialvirulenceproperties AT burdinbeatrice survivalandgrowthofstenotrophomonasmaltophiliainfreelivingamoebaeflaandbacterialvirulenceproperties AT nazaretsylvie survivalandgrowthofstenotrophomonasmaltophiliainfreelivingamoebaeflaandbacterialvirulenceproperties AT favrebontesabine survivalandgrowthofstenotrophomonasmaltophiliainfreelivingamoebaeflaandbacterialvirulenceproperties |