Cargando…
Uncovering hidden disease patterns by simulating clinical diagnostic processes
Choosing a sequence of observations (often with stochastic outcomes) which maximizes the information gain from a system of interacting variables is essential for a wide range of problems in science and technology, such as clinical diagnostic problems. Here, we use a probabilistic model of diseases a...
Autores principales: | Ramezanpour, Abolfazl, Mashaghi, Alireza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799257/ https://www.ncbi.nlm.nih.gov/pubmed/29402991 http://dx.doi.org/10.1038/s41598-018-20826-y |
Ejemplares similares
-
Disease evolution in reaction networks: Implications for a diagnostic problem
por: Ramezanpour, Abolfazl, et al.
Publicado: (2020) -
Statistical Physics for Medical Diagnostics: Learning, Inference, and Optimization Algorithms
por: Ramezanpour, Abolfazl, et al.
Publicado: (2020) -
Uncovering the secrets of hidden twists
por: Hod, Oded, et al.
Publicado: (2023) -
Hidden heterogeneity: Uncovering patterns of adherence in microbicide trials for HIV prevention
por: Miller, Lori, et al.
Publicado: (2022) -
A hidden neurologic disease uncovered in the trauma bay
por: Grugan, Ben, et al.
Publicado: (2017)