Cargando…
Amnionless-mediated glycosylation is crucial for cell surface targeting of cubilin in renal and intestinal cells
Mutations in either cubilin (CUBN) or amnionless (AMN) genes cause Imerslund–Gräsbeck syndrome (IGS), a hereditary disease characterised by anaemia attributed to selective intestinal malabsorption of cobalamin and low-molecular weight proteinuria. Although cubilin protein does not have a transmembra...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799345/ https://www.ncbi.nlm.nih.gov/pubmed/29402915 http://dx.doi.org/10.1038/s41598-018-20731-4 |
Sumario: | Mutations in either cubilin (CUBN) or amnionless (AMN) genes cause Imerslund–Gräsbeck syndrome (IGS), a hereditary disease characterised by anaemia attributed to selective intestinal malabsorption of cobalamin and low-molecular weight proteinuria. Although cubilin protein does not have a transmembrane segment, it functions as a multi-ligand receptor by binding to the transmembrane protein, amnionless. We established a system to quantitatively analyse membrane targeting of the protein complex in cultured renal and intestinal cells and analysed the pathogenic mechanisms of mutations found in IGS patients. A novel CUBN mutation, several previously reported CUBN missense mutations and all previously reported AMN missense mutations resulted in endoplasmic reticulum (ER) retention and completely inhibited amnionless-dependent plasma membrane expression of cubilin. The ER retention of cubilin and amnionless was confirmed in renal proximal tubular cells of a patient with IGS. Notably, the interaction between cubilin and amnionless was not sufficient, but amnionless-mediated glycosylation of cubilin was necessary for their surface expression. Quantitative mass spectrometry and mutagenesis demonstrated that N-linked glycosylation of at least 4 residues of cubilin protein was required for its surface targeting. These results delineated the molecular mechanisms of membrane trafficking of cubilin in renal and intestinal cells. |
---|