Cargando…
On asphericity of convex bodies in linear normed spaces
In 1960, Dvoretzky proved that in any infinite dimensional Banach space X and for any [Formula: see text] there exists a subspace L of X of arbitrary large dimension ϵ-iometric to Euclidean space. A main tool in proving this deep result was some results concerning asphericity of convex bodies. In th...
Autores principales: | Faried, Nashat, Morsy, Ahmed, Hussein, Aya M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799377/ https://www.ncbi.nlm.nih.gov/pubmed/29445261 http://dx.doi.org/10.1186/s13660-018-1624-z |
Ejemplares similares
-
$\delta$-convexity in normed linear spaces
por: An, P T, et al.
Publicado: (2002) -
Micro Aspheric Convex Lenses Fabricated by Precise Scraping
por: Lin, Meng-Ju
Publicado: (2022) -
Convex optimization in normed spaces: theory, methods and examples
por: Peypouquet, Juan
Publicado: (2015) -
Normed linear spaces
por: Day, Mahlon M
Publicado: (1962) -
Normed linear spaces
por: Day, Mahlon M
Publicado: (1973)