Cargando…

Comparative proteomic analysis of outer membrane protein 43 (omp43)-deficient Bartonella henselae

Outer membrane proteins (OMPs) of Gram-negative bacteria constitute the first line of defense protecting cells against environmental stresses including chemical, biophysical, and biological attacks. Although the 43-kDa OMP (OMP43) is major porin protein among Bartonella henselae-derived OMPs, its fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Jun-Gu, Lee, Hee-Woo, Ko, Sungjin, Chae, Joon-Seok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Veterinary Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799401/
https://www.ncbi.nlm.nih.gov/pubmed/28693313
http://dx.doi.org/10.4142/jvs.2018.19.1.59
Descripción
Sumario:Outer membrane proteins (OMPs) of Gram-negative bacteria constitute the first line of defense protecting cells against environmental stresses including chemical, biophysical, and biological attacks. Although the 43-kDa OMP (OMP43) is major porin protein among Bartonella henselae-derived OMPs, its function remains unreported. In this study, OMP43-deficient mutant B. henselae (Δomp43) was generated to investigate OMP43 function. Interestingly, Δomp43 exhibited weaker proliferative ability than that of wild-type (WT) B. henselae. To study the differences in proteomic expression between WT and Δomp43, two-dimensional gel electrophoresis-based proteomic analysis was performed. Based on Clusters of Orthologus Groups functional assignments, 12 proteins were associated with metabolism, 7 proteins associated with information storage and processing, and 3 proteins associated with cellular processing and signaling. By semi-quantitative reverse transcriptase polymerase chain reaction, increases in tldD, efp, ntrX, pdhA, purB, and ATPA mRNA expression and decreases in Rho and yfeA mRNA expression were confirmed in Δomp43. In conclusion, this is the first report showing that a loss of OMP43 expression in B. henselae leads to retarded proliferation. Furthermore, our proteomic data provide useful information for the further investigation of mechanisms related to the growth of B. henselae.