Cargando…
fNIRS-based Neurorobotic Interface for gait rehabilitation
BACKGROUND: In this paper, a novel functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI) framework for control of prosthetic legs and rehabilitation of patients suffering from locomotive disorders is presented. METHODS: fNIRS signals are used to initiate and stop the gai...
Autores principales: | Khan, Rayyan Azam, Naseer, Noman, Qureshi, Nauman Khalid, Noori, Farzan Majeed, Nazeer, Hammad, Khan, Muhammad Umer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800280/ https://www.ncbi.nlm.nih.gov/pubmed/29402310 http://dx.doi.org/10.1186/s12984-018-0346-2 |
Ejemplares similares
-
Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks
por: Hamid, Huma, et al.
Publicado: (2022) -
Enhancing Classification Performance of Functional Near-Infrared Spectroscopy- Brain–Computer Interface Using Adaptive Estimation of General Linear Model Coefficients
por: Qureshi, Nauman Khalid, et al.
Publicado: (2017) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
por: Gulraiz, Asma, et al.
Publicado: (2022) -
Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method
por: Nazeer, Hammad, et al.
Publicado: (2020) -
fNIRS-based brain-computer interfaces: a review
por: Naseer, Noman, et al.
Publicado: (2015)