Cargando…
Forecasting short-term data center network traffic load with convolutional neural networks
Efficient resource management in data centers is of central importance to content service providers as 90 percent of the network traffic is expected to go through them in the coming years. In this context we propose the use of convolutional neural networks (CNNs) to forecast short-term changes in th...
Autores principales: | Mozo, Alberto, Ordozgoiti, Bruno, Gómez-Canaval, Sandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800645/ https://www.ncbi.nlm.nih.gov/pubmed/29408936 http://dx.doi.org/10.1371/journal.pone.0191939 |
Ejemplares similares
-
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
City-Wide Traffic Flow Forecasting Using a Deep Convolutional Neural Network
por: Sun, Shangyu, et al.
Publicado: (2020) -
Improved Neural Networks with Random Weights for Short-Term Load Forecasting
por: Lang, Kun, et al.
Publicado: (2015) -
Recurrent neural networks for short-term load forecasting: an overview and comparative analysis
por: Bianchi, Filippo Maria, et al.
Publicado: (2017) -
Transformers for Multi-Horizon Forecasting in an Industry 4.0 Use Case
por: Vakaruk, Stanislav, et al.
Publicado: (2023)