Cargando…
TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD
The cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a common histopathological hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD). However, the composition of aggregates and their contribution to the disease proc...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800968/ https://www.ncbi.nlm.nih.gov/pubmed/29311743 http://dx.doi.org/10.1038/s41593-017-0047-3 |
Sumario: | The cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a common histopathological hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD). However, the composition of aggregates and their contribution to the disease process remain unknown. Here, we used proximity-dependent biotin identification (BioID) to interrogate the interactome of detergent-insoluble TDP-43 aggregates, and found them enriched for components of the nuclear pore complex (NPC) and nucleocytoplasmic transport machinery. Aggregated and disease-linked mutant TDP-43 triggered the sequestration and/or mislocalization of nucleoporins (Nups) and transport factors (TFs), and interfered with nuclear protein import and RNA export in mouse primary cortical neurons, human fibroblasts, and iPSC-derived neurons. Nuclear pore pathology is present in brain tissue from sporadic ALS cases (sALS) and those with genetic mutations in TARDBP (TDP-ALS) and C9orf72 (C9-ALS). Our data strongly implicate TDP-43-mediated nucleocytoplasmic transport defects as a common disease mechanism in ALS/FTD. |
---|