Cargando…
Exploring the Antimicrobial Action of Quaternary Amines against Acinetobacter baumannii
Quaternary amine compounds (QAC) are potent antimicrobials used to prevent the spread of pathogenic bacteria. While they are known for their membrane-damaging properties, QAC action has been suggested to extend beyond the surface to intracellular targets. Here we characterize the range of action of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801471/ https://www.ncbi.nlm.nih.gov/pubmed/29437928 http://dx.doi.org/10.1128/mBio.02394-17 |
Sumario: | Quaternary amine compounds (QAC) are potent antimicrobials used to prevent the spread of pathogenic bacteria. While they are known for their membrane-damaging properties, QAC action has been suggested to extend beyond the surface to intracellular targets. Here we characterize the range of action of the QAC biocide benzalkonium chloride (BZK) against the bacterial pathogen Acinetobacter baumannii. At high concentrations, BZK acts through membrane disruption, but at low concentrations we show that wide-spread protein aggregation is associated with BZK-induced cell death. Resistance to BZK is found to develop through ribosomal protein mutations that protect A. baumannii against BZK-induced protein aggregation. The multifunctional impact of BZK led us to discover that alternative QAC structures, with low human toxicity, retain potent action against multidrug-resistant A. baumannii, Staphylococcus aureus, and Clostridium difficile and present opportunities for their development as antibiotics. |
---|