Cargando…
Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy
Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dy...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801502/ https://www.ncbi.nlm.nih.gov/pubmed/29242210 http://dx.doi.org/10.15252/emmm.201607284 |
_version_ | 1783298358898589696 |
---|---|
author | Benedetti, Sara Uno, Narumi Hoshiya, Hidetoshi Ragazzi, Martina Ferrari, Giulia Kazuki, Yasuhiro Moyle, Louise Anne Tonlorenzi, Rossana Lombardo, Angelo Chaouch, Soraya Mouly, Vincent Moore, Marc Popplewell, Linda Kazuki, Kanako Katoh, Motonobu Naldini, Luigi Dickson, George Messina, Graziella Oshimura, Mitsuo Cossu, Giulio Tedesco, Francesco Saverio |
author_facet | Benedetti, Sara Uno, Narumi Hoshiya, Hidetoshi Ragazzi, Martina Ferrari, Giulia Kazuki, Yasuhiro Moyle, Louise Anne Tonlorenzi, Rossana Lombardo, Angelo Chaouch, Soraya Mouly, Vincent Moore, Marc Popplewell, Linda Kazuki, Kanako Katoh, Motonobu Naldini, Luigi Dickson, George Messina, Graziella Oshimura, Mitsuo Cossu, Giulio Tedesco, Francesco Saverio |
author_sort | Benedetti, Sara |
collection | PubMed |
description | Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large‐capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS‐HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS‐HAC into DMD satellite cell‐derived myoblasts and perivascular cell‐derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next‐generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. |
format | Online Article Text |
id | pubmed-5801502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58015022018-02-15 Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy Benedetti, Sara Uno, Narumi Hoshiya, Hidetoshi Ragazzi, Martina Ferrari, Giulia Kazuki, Yasuhiro Moyle, Louise Anne Tonlorenzi, Rossana Lombardo, Angelo Chaouch, Soraya Mouly, Vincent Moore, Marc Popplewell, Linda Kazuki, Kanako Katoh, Motonobu Naldini, Luigi Dickson, George Messina, Graziella Oshimura, Mitsuo Cossu, Giulio Tedesco, Francesco Saverio EMBO Mol Med Research Articles Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large‐capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS‐HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS‐HAC into DMD satellite cell‐derived myoblasts and perivascular cell‐derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next‐generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. John Wiley and Sons Inc. 2017-12-14 2018-02 /pmc/articles/PMC5801502/ /pubmed/29242210 http://dx.doi.org/10.15252/emmm.201607284 Text en © 2017 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Benedetti, Sara Uno, Narumi Hoshiya, Hidetoshi Ragazzi, Martina Ferrari, Giulia Kazuki, Yasuhiro Moyle, Louise Anne Tonlorenzi, Rossana Lombardo, Angelo Chaouch, Soraya Mouly, Vincent Moore, Marc Popplewell, Linda Kazuki, Kanako Katoh, Motonobu Naldini, Luigi Dickson, George Messina, Graziella Oshimura, Mitsuo Cossu, Giulio Tedesco, Francesco Saverio Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy |
title | Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy |
title_full | Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy |
title_fullStr | Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy |
title_full_unstemmed | Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy |
title_short | Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy |
title_sort | reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for duchenne muscular dystrophy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801502/ https://www.ncbi.nlm.nih.gov/pubmed/29242210 http://dx.doi.org/10.15252/emmm.201607284 |
work_keys_str_mv | AT benedettisara reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT unonarumi reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT hoshiyahidetoshi reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT ragazzimartina reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT ferrarigiulia reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT kazukiyasuhiro reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT moylelouiseanne reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT tonlorenzirossana reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT lombardoangelo reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT chaouchsoraya reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT moulyvincent reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT mooremarc reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT popplewelllinda reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT kazukikanako reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT katohmotonobu reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT naldiniluigi reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT dicksongeorge reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT messinagraziella reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT oshimuramitsuo reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT cossugiulio reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy AT tedescofrancescosaverio reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy |