Cargando…

Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy

Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dy...

Descripción completa

Detalles Bibliográficos
Autores principales: Benedetti, Sara, Uno, Narumi, Hoshiya, Hidetoshi, Ragazzi, Martina, Ferrari, Giulia, Kazuki, Yasuhiro, Moyle, Louise Anne, Tonlorenzi, Rossana, Lombardo, Angelo, Chaouch, Soraya, Mouly, Vincent, Moore, Marc, Popplewell, Linda, Kazuki, Kanako, Katoh, Motonobu, Naldini, Luigi, Dickson, George, Messina, Graziella, Oshimura, Mitsuo, Cossu, Giulio, Tedesco, Francesco Saverio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801502/
https://www.ncbi.nlm.nih.gov/pubmed/29242210
http://dx.doi.org/10.15252/emmm.201607284
_version_ 1783298358898589696
author Benedetti, Sara
Uno, Narumi
Hoshiya, Hidetoshi
Ragazzi, Martina
Ferrari, Giulia
Kazuki, Yasuhiro
Moyle, Louise Anne
Tonlorenzi, Rossana
Lombardo, Angelo
Chaouch, Soraya
Mouly, Vincent
Moore, Marc
Popplewell, Linda
Kazuki, Kanako
Katoh, Motonobu
Naldini, Luigi
Dickson, George
Messina, Graziella
Oshimura, Mitsuo
Cossu, Giulio
Tedesco, Francesco Saverio
author_facet Benedetti, Sara
Uno, Narumi
Hoshiya, Hidetoshi
Ragazzi, Martina
Ferrari, Giulia
Kazuki, Yasuhiro
Moyle, Louise Anne
Tonlorenzi, Rossana
Lombardo, Angelo
Chaouch, Soraya
Mouly, Vincent
Moore, Marc
Popplewell, Linda
Kazuki, Kanako
Katoh, Motonobu
Naldini, Luigi
Dickson, George
Messina, Graziella
Oshimura, Mitsuo
Cossu, Giulio
Tedesco, Francesco Saverio
author_sort Benedetti, Sara
collection PubMed
description Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large‐capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS‐HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS‐HAC into DMD satellite cell‐derived myoblasts and perivascular cell‐derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next‐generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy.
format Online
Article
Text
id pubmed-5801502
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-58015022018-02-15 Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy Benedetti, Sara Uno, Narumi Hoshiya, Hidetoshi Ragazzi, Martina Ferrari, Giulia Kazuki, Yasuhiro Moyle, Louise Anne Tonlorenzi, Rossana Lombardo, Angelo Chaouch, Soraya Mouly, Vincent Moore, Marc Popplewell, Linda Kazuki, Kanako Katoh, Motonobu Naldini, Luigi Dickson, George Messina, Graziella Oshimura, Mitsuo Cossu, Giulio Tedesco, Francesco Saverio EMBO Mol Med Research Articles Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large‐capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS‐HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS‐HAC into DMD satellite cell‐derived myoblasts and perivascular cell‐derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next‐generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. John Wiley and Sons Inc. 2017-12-14 2018-02 /pmc/articles/PMC5801502/ /pubmed/29242210 http://dx.doi.org/10.15252/emmm.201607284 Text en © 2017 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Benedetti, Sara
Uno, Narumi
Hoshiya, Hidetoshi
Ragazzi, Martina
Ferrari, Giulia
Kazuki, Yasuhiro
Moyle, Louise Anne
Tonlorenzi, Rossana
Lombardo, Angelo
Chaouch, Soraya
Mouly, Vincent
Moore, Marc
Popplewell, Linda
Kazuki, Kanako
Katoh, Motonobu
Naldini, Luigi
Dickson, George
Messina, Graziella
Oshimura, Mitsuo
Cossu, Giulio
Tedesco, Francesco Saverio
Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy
title Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy
title_full Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy
title_fullStr Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy
title_full_unstemmed Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy
title_short Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for Duchenne muscular dystrophy
title_sort reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next‐generation human artificial chromosomes for duchenne muscular dystrophy
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801502/
https://www.ncbi.nlm.nih.gov/pubmed/29242210
http://dx.doi.org/10.15252/emmm.201607284
work_keys_str_mv AT benedettisara reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT unonarumi reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT hoshiyahidetoshi reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT ragazzimartina reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT ferrarigiulia reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT kazukiyasuhiro reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT moylelouiseanne reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT tonlorenzirossana reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT lombardoangelo reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT chaouchsoraya reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT moulyvincent reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT mooremarc reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT popplewelllinda reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT kazukikanako reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT katohmotonobu reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT naldiniluigi reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT dicksongeorge reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT messinagraziella reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT oshimuramitsuo reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT cossugiulio reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy
AT tedescofrancescosaverio reversibleimmortalisationenablesgeneticcorrectionofhumanmuscleprogenitorsandengineeringofnextgenerationhumanartificialchromosomesforduchennemusculardystrophy