Cargando…
ChemTS: an efficient python library for de novo molecular generation
Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational autoencoders and recurrent neural net...
Autores principales: | Yang, Xiufeng, Zhang, Jinzhe, Yoshizoe, Kazuki, Terayama, Kei, Tsuda, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801530/ https://www.ncbi.nlm.nih.gov/pubmed/29435094 http://dx.doi.org/10.1080/14686996.2017.1401424 |
Ejemplares similares
-
NMR-TS: de novo molecule identification from NMR spectra
por: Zhang, Jinzhe, et al.
Publicado: (2020) -
MDTS: automatic complex materials design using Monte Carlo tree search
por: M. Dieb, Thaer, et al.
Publicado: (2017) -
De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning
por: Sumita, Masato, et al.
Publicado: (2022) -
Machine learning reveals orbital interaction in materials
por: Lam Pham, Tien, et al.
Publicado: (2017) -
RNA inverse folding using Monte Carlo tree search
por: Yang, Xiufeng, et al.
Publicado: (2017)