Cargando…

A SNP resource for studying North American moose

Background: Moose ( Alces alces) colonized the North American continent from Asia less than 15,000 years ago, and spread across the boreal forest regions of Canada and the northern United States (US).  Contemporary populations have low genetic diversity, due either to low number of individuals in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalbfleisch, Theodore S., Murdoch, Brenda M., Smith, Timothy P. L., Murdoch, James D., Heaton, Michael P., McKay, Stephanie D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801567/
https://www.ncbi.nlm.nih.gov/pubmed/29479424
http://dx.doi.org/10.12688/f1000research.13501.1
_version_ 1783298369267957760
author Kalbfleisch, Theodore S.
Murdoch, Brenda M.
Smith, Timothy P. L.
Murdoch, James D.
Heaton, Michael P.
McKay, Stephanie D.
author_facet Kalbfleisch, Theodore S.
Murdoch, Brenda M.
Smith, Timothy P. L.
Murdoch, James D.
Heaton, Michael P.
McKay, Stephanie D.
author_sort Kalbfleisch, Theodore S.
collection PubMed
description Background: Moose ( Alces alces) colonized the North American continent from Asia less than 15,000 years ago, and spread across the boreal forest regions of Canada and the northern United States (US).  Contemporary populations have low genetic diversity, due either to low number of individuals in the original migration (founder effect), and/or subsequent population bottlenecks in North America.  Genetic tests based on informative single nucleotide polymorphism (SNP) markers are helpful in forensic and wildlife conservation activities, but have been difficult to develop for moose, due to the lack of a reference genome assembly and whole genome sequence (WGS) data. Methods:  WGS data were generated for four individual moose from the US states of Alaska, Idaho, Wyoming, and Vermont with minimum and average genome coverage depths of 14- and 19-fold, respectively.  Cattle and sheep reference genomes were used for aligning sequence reads and identifying moose SNPs. Results:  Approximately 11% and 9% of moose WGS reads aligned to cattle and sheep genomes, respectively.  The reads clustered at genomic segments, where sequence identity between these species was greater than 95%.  In these segments, average mapped read depth was approximately 19-fold.  Sets of 46,005 and 36,934 high-confidence SNPs were identified from cattle and sheep comparisons, respectively, with 773 and 552 of those having minor allele frequency of 0.5 and conserved flanking sequences in all three species.  Among the four moose, heterozygosity and allele sharing of SNP genotypes were consistent with decreasing levels of moose genetic diversity from west to east.  A minimum set of 317 SNPs, informative across all four moose, was selected as a resource for future SNP assay design. Conclusions:  All SNPs and associated information are available, without restriction, to support development of SNP-based tests for animal identification, parentage determination, and estimating relatedness in North American moose.
format Online
Article
Text
id pubmed-5801567
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-58015672018-02-22 A SNP resource for studying North American moose Kalbfleisch, Theodore S. Murdoch, Brenda M. Smith, Timothy P. L. Murdoch, James D. Heaton, Michael P. McKay, Stephanie D. F1000Res Research Article Background: Moose ( Alces alces) colonized the North American continent from Asia less than 15,000 years ago, and spread across the boreal forest regions of Canada and the northern United States (US).  Contemporary populations have low genetic diversity, due either to low number of individuals in the original migration (founder effect), and/or subsequent population bottlenecks in North America.  Genetic tests based on informative single nucleotide polymorphism (SNP) markers are helpful in forensic and wildlife conservation activities, but have been difficult to develop for moose, due to the lack of a reference genome assembly and whole genome sequence (WGS) data. Methods:  WGS data were generated for four individual moose from the US states of Alaska, Idaho, Wyoming, and Vermont with minimum and average genome coverage depths of 14- and 19-fold, respectively.  Cattle and sheep reference genomes were used for aligning sequence reads and identifying moose SNPs. Results:  Approximately 11% and 9% of moose WGS reads aligned to cattle and sheep genomes, respectively.  The reads clustered at genomic segments, where sequence identity between these species was greater than 95%.  In these segments, average mapped read depth was approximately 19-fold.  Sets of 46,005 and 36,934 high-confidence SNPs were identified from cattle and sheep comparisons, respectively, with 773 and 552 of those having minor allele frequency of 0.5 and conserved flanking sequences in all three species.  Among the four moose, heterozygosity and allele sharing of SNP genotypes were consistent with decreasing levels of moose genetic diversity from west to east.  A minimum set of 317 SNPs, informative across all four moose, was selected as a resource for future SNP assay design. Conclusions:  All SNPs and associated information are available, without restriction, to support development of SNP-based tests for animal identification, parentage determination, and estimating relatedness in North American moose. F1000 Research Limited 2018-01-10 /pmc/articles/PMC5801567/ /pubmed/29479424 http://dx.doi.org/10.12688/f1000research.13501.1 Text en Copyright: © 2018 Kalbfleisch TS et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Kalbfleisch, Theodore S.
Murdoch, Brenda M.
Smith, Timothy P. L.
Murdoch, James D.
Heaton, Michael P.
McKay, Stephanie D.
A SNP resource for studying North American moose
title A SNP resource for studying North American moose
title_full A SNP resource for studying North American moose
title_fullStr A SNP resource for studying North American moose
title_full_unstemmed A SNP resource for studying North American moose
title_short A SNP resource for studying North American moose
title_sort snp resource for studying north american moose
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801567/
https://www.ncbi.nlm.nih.gov/pubmed/29479424
http://dx.doi.org/10.12688/f1000research.13501.1
work_keys_str_mv AT kalbfleischtheodores asnpresourceforstudyingnorthamericanmoose
AT murdochbrendam asnpresourceforstudyingnorthamericanmoose
AT smithtimothypl asnpresourceforstudyingnorthamericanmoose
AT murdochjamesd asnpresourceforstudyingnorthamericanmoose
AT heatonmichaelp asnpresourceforstudyingnorthamericanmoose
AT mckaystephanied asnpresourceforstudyingnorthamericanmoose
AT kalbfleischtheodores snpresourceforstudyingnorthamericanmoose
AT murdochbrendam snpresourceforstudyingnorthamericanmoose
AT smithtimothypl snpresourceforstudyingnorthamericanmoose
AT murdochjamesd snpresourceforstudyingnorthamericanmoose
AT heatonmichaelp snpresourceforstudyingnorthamericanmoose
AT mckaystephanied snpresourceforstudyingnorthamericanmoose