Cargando…
Using an onset-anchored Bayesian hierarchical model to improve predictions for amyotrophic lateral sclerosis disease progression
BACKGROUND: Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a rare disease with extreme between-subject variability, especially with respect to rate of disease progression. This makes modelling a subject’s disease progression, which is measured by the ALS Functional Ratin...
Autores principales: | Karanevich, Alex G., Statland, Jeffrey M., Gajewski, Byron J., He, Jianghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801819/ https://www.ncbi.nlm.nih.gov/pubmed/29409450 http://dx.doi.org/10.1186/s12874-018-0479-9 |
Ejemplares similares
-
Using automated electronic medical record data extraction to model ALS survival and progression
por: Karanevich, Alex G., et al.
Publicado: (2018) -
Upper Motor Neuron Disorders: Primary Lateral Sclerosis, Upper Motor Neuron Dominant Amyotrophic Lateral Sclerosis, and Hereditary Spastic Paraplegia
por: Fullam, Timothy, et al.
Publicado: (2021) -
A Dynamic Bayesian Network model for the simulation of Amyotrophic Lateral Sclerosis progression
por: Zandonà, Alessandro, et al.
Publicado: (2019) -
Amyotrophic lateral sclerosis with a sudden-onset history
por: Kanbayashi, Takamichi, et al.
Publicado: (2017) -
Progress in Therapy Development for Amyotrophic Lateral Sclerosis
por: Venkova-Hristova, Kalina, et al.
Publicado: (2012)