Cargando…
Efficient differentially private learning improves drug sensitivity prediction
BACKGROUND: Users of a personalised recommendation system face a dilemma: recommendations can be improved by learning from data, but only if other users are willing to share their private information. Good personalised predictions are vitally important in precision medicine, but genomic information...
Autores principales: | Honkela, Antti, Das, Mrinal, Nieminen, Arttu, Dikmen, Onur, Kaski, Samuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801888/ https://www.ncbi.nlm.nih.gov/pubmed/29409513 http://dx.doi.org/10.1186/s13062-017-0203-4 |
Ejemplares similares
-
Representation transfer for differentially private drug sensitivity prediction
por: Niinimäki, Teppo, et al.
Publicado: (2019) -
Exploration and retrieval of whole-metagenome sequencing samples
por: Seth, Sohan, et al.
Publicado: (2014) -
Privacy-preserving data sharing via probabilistic modeling
por: Jälkö, Joonas, et al.
Publicado: (2021) -
Analysis of differential splicing suggests different modes of short-term splicing regulation
por: Topa, Hande, et al.
Publicado: (2016) -
Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability
por: Uziela, Karolis, et al.
Publicado: (2015)