Cargando…

Molecular characterization and analysis of the porcine NURR1 gene

Orphan receptor NURR1 (also termed NR4A2) belongs to the nuclear receptor superfamily and functions as a regulatory factor of differentiation, migration, maturation and maintenance of mesencephalic dopaminergic neurons. NURR1 plays an important role in nigrostriatal dopamine neuron development and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Larsen, Knud, Momeni, Jamal, Farajzadeh, Leila, Callesen, Henrik, Bendixen, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801910/
https://www.ncbi.nlm.nih.gov/pubmed/29450128
http://dx.doi.org/10.1016/j.biopen.2016.07.001
Descripción
Sumario:Orphan receptor NURR1 (also termed NR4A2) belongs to the nuclear receptor superfamily and functions as a regulatory factor of differentiation, migration, maturation and maintenance of mesencephalic dopaminergic neurons. NURR1 plays an important role in nigrostriatal dopamine neuron development and is therefore implicated in the pathogenesis of neurodegenerative diseases linked to the dopamine system of the midbrain. Here we report the isolation and characterization of porcine NURR1 cDNA. The NURR1 cDNA was RT-PCR cloned using NURR1-specific oligonucleotide primers derived from in silico sequences. The porcine NURR1 cDNA encodes a polypeptide of 598 amino acids, displaying a very high similarity with bovine, human and mouse (99%) NURR1 protein. Expression analysis revealed a differential NURR1 mRNA expression in various organs and tissues. NURR1 transcripts could be detected as early as at 60 days of embryo development in different brain tissues. A significant increase in NURR1 transcript in the cerebellum and a decrease in NURR1 transcript in the basal ganglia was observed during embryo development. The porcine NURR1 gene was mapped to chromosome 15. Two missense mutations were found in exon 3, the first coding exon of NURR1. Methylation analysis of the porcine NURR1 gene body revealed a high methylation degree in brain tissue, whereas methylation of the promoter was very low. A decrease in DNA methylation in a discrete region of the NURR1 promoter was observed in pig frontal cortex during pig embryo development. This observation correlated with an increase in NURR1 transcripts. Therefore, methylation might be a determinant of NURR1 expression at certain time points in embryo development.