Cargando…

Characterizing uncertain sea-level rise projections to support investment decisions

Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decision...

Descripción completa

Detalles Bibliográficos
Autores principales: Sriver, Ryan L., Lempert, Robert J., Wikman-Svahn, Per, Keller, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802450/
https://www.ncbi.nlm.nih.gov/pubmed/29414978
http://dx.doi.org/10.1371/journal.pone.0190641
_version_ 1783298523545993216
author Sriver, Ryan L.
Lempert, Robert J.
Wikman-Svahn, Per
Keller, Klaus
author_facet Sriver, Ryan L.
Lempert, Robert J.
Wikman-Svahn, Per
Keller, Klaus
author_sort Sriver, Ryan L.
collection PubMed
description Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions.
format Online
Article
Text
id pubmed-5802450
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-58024502018-02-23 Characterizing uncertain sea-level rise projections to support investment decisions Sriver, Ryan L. Lempert, Robert J. Wikman-Svahn, Per Keller, Klaus PLoS One Research Article Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions. Public Library of Science 2018-02-07 /pmc/articles/PMC5802450/ /pubmed/29414978 http://dx.doi.org/10.1371/journal.pone.0190641 Text en © 2018 Sriver et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Sriver, Ryan L.
Lempert, Robert J.
Wikman-Svahn, Per
Keller, Klaus
Characterizing uncertain sea-level rise projections to support investment decisions
title Characterizing uncertain sea-level rise projections to support investment decisions
title_full Characterizing uncertain sea-level rise projections to support investment decisions
title_fullStr Characterizing uncertain sea-level rise projections to support investment decisions
title_full_unstemmed Characterizing uncertain sea-level rise projections to support investment decisions
title_short Characterizing uncertain sea-level rise projections to support investment decisions
title_sort characterizing uncertain sea-level rise projections to support investment decisions
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802450/
https://www.ncbi.nlm.nih.gov/pubmed/29414978
http://dx.doi.org/10.1371/journal.pone.0190641
work_keys_str_mv AT sriverryanl characterizinguncertainsealevelriseprojectionstosupportinvestmentdecisions
AT lempertrobertj characterizinguncertainsealevelriseprojectionstosupportinvestmentdecisions
AT wikmansvahnper characterizinguncertainsealevelriseprojectionstosupportinvestmentdecisions
AT kellerklaus characterizinguncertainsealevelriseprojectionstosupportinvestmentdecisions