Cargando…
Detecting hospital-acquired infections: A document classification approach using support vector machines and gradient tree boosting
Hospital-acquired infections pose a significant risk to patient health, while their surveillance is an additional workload for hospital staff. Our overall aim is to build a surveillance system that reliably detects all patient records that potentially include hospital-acquired infections. This is to...
Autores principales: | Ehrentraut, Claudia, Ekholm, Markus, Tanushi, Hideyuki, Tiedemann, Jörg, Dalianis, Hercules |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802538/ https://www.ncbi.nlm.nih.gov/pubmed/27496862 http://dx.doi.org/10.1177/1460458216656471 |
Ejemplares similares
-
Medical Classifications and Terminologies
por: Dalianis, Hercules
Publicado: (2018) -
Louhi 2010: Special issue on Text and Data Mining of Health Documents
por: Dalianis, Hercules, et al.
Publicado: (2011) -
Automatic Recognition of High-Density Epileptic EEG Using Support Vector Machine and Gradient-Boosting Decision Tree
por: He, Jiaxiu, et al.
Publicado: (2022) -
Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm
por: Luo, Yuan, et al.
Publicado: (2017) -
Natural language processing and machine learning to enable automatic extraction and classification of patients’ smoking status from electronic medical records
por: Caccamisi, Andrea, et al.
Publicado: (2020)