Cargando…

Suppression of Breast Cancer Cell Proliferation by Selective Single-Domain Antibody for Intracellular STAT3

BACKGROUND: The serendipitous discovery of heavy-chain antibodies devoid of light chains in camelids and the subsequent development of VHHs (variable region of camelid heavy chain) have provided a very important tool for research and possibly for therapeutics. In this study, we synthesized single-do...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Sunanda, Murillo, Genoveva, Chen, Dong, Parihar, Ashutosh S, Mehta, Rajendra G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802608/
https://www.ncbi.nlm.nih.gov/pubmed/29434474
http://dx.doi.org/10.1177/1178223417750858
Descripción
Sumario:BACKGROUND: The serendipitous discovery of heavy-chain antibodies devoid of light chains in camelids and the subsequent development of VHHs (variable region of camelid heavy chain) have provided a very important tool for research and possibly for therapeutics. In this study, we synthesized single-domain 15-kDa antibody SBT-100 (anti-STAT3 B VHH13) against human STAT3 (signal transducer and activator of transcription) that binds selectively to STAT3 and suppresses the function of phosphorylated STAT3 (p-STAT3). METHODS: Single-chain VHH nanobodies were generated by immunizing camelid with humanized STAT3. Commercially available breast cancer cell lines including MDA-MB-231, MDA-MB-468, MDA-MB-453, MCF-7, and BT474 were used. Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The association of anti-STAT3 B VHH13 with STAT3 and p-STAT3 was determined by immunoprecipitation and Western blot analyses. The efficacy of SBT-100 on the growth of MDA-MB-231 xenografts in vivo was determined using athymic mice. Statistical significance for cell proliferation was determined using analysis of variance. If a significant difference (P < .05) was observed, then Tukey-Kramer multiple comparison test was conducted. RESULTS: SBT-100 suppressed cell proliferation of triple-negative breast cancer cells (P < .01) as well as provided significant inhibition of tumor growth (P < .05) in a xenograft model without any toxicity. Results are presented to show that anti-STAT3 B VHH13 selectively binds to STAT3 suggesting that the effects were mediated by inhibiting STAT3. CONCLUSIONS: A very large number of human malignancies and benign diseases have constitutive STAT3 activation. Therefore, the results described here suggest that anti-STAT3 B VHH13 can be developed for therapeutic intervention for cancer cells expressing STAT3 or p-STAT3.