Cargando…

Chitosan oligosaccharide ameliorates acute lung injury induced by blast injury through the DDAH1/ADMA pathway

OBJECTIVE: To investigate the protective effect of chitosan oligosaccharide (COS) on acute lung injury (ALI) caused by blast injury, and explore possible molecular mechanisms. METHODS: A mouse model of blast injury-induced ALI was established using a self-made explosive device. Thirty mice were rand...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yun-En, Tong, Cang-Ci, Zhang, Yu-Biao, Cong, Pei-Fang, Shi, Xiu-Yun, Liu, Ying, Shi, Lin, Tong, Zhou, Jin, Hong-Xu, Hou, Ming-Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802901/
https://www.ncbi.nlm.nih.gov/pubmed/29415054
http://dx.doi.org/10.1371/journal.pone.0192135
Descripción
Sumario:OBJECTIVE: To investigate the protective effect of chitosan oligosaccharide (COS) on acute lung injury (ALI) caused by blast injury, and explore possible molecular mechanisms. METHODS: A mouse model of blast injury-induced ALI was established using a self-made explosive device. Thirty mice were randomly assigned to control, ALI and ALI + COS groups. An eight-channel physiological monitor was used to determine the mouse physiological index. Enzyme linked immunosorbent assay was used to measure serum inflammatory factors. Hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, immunofluorescence staining, real time-polymerase chain reaction and western blot assay were used to detect inflammatory reactions, oxidative stress and apoptosis. RESULTS: Mice were sacrificed 24 hours after successful model induction. Compared with the ALI group, the heart rate, respiration and PCO(2) were significantly lower, but the PO(2), TCO(2) and HCO(3)(-) were significantly higher in the ALI + COS group. Compared to ALI alone, COS treatment of ALI caused a significant decrease in the wet/dry lung weight ratio, indicating a reduction in lung edema, inflammatory cell infiltration, levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-4, IL-6 and nuclear factor kappa B mRNA and protein expression were reduced and IL-10 mRNA and protein expression was increased (P < 0.05). COS significantly inhibited reactive oxygen species, MDA5 and IREα mRNA and protein expressions, cell apoptosis and Bax and Caspase-3 mRNA and protein expressions, and significantly increased superoxide dismutase-1 mRNA expression, and Bcl-2 and Caspase-8 mRNA and protein expression (all P<0.05). COS significantly increased dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein expression, and reduced ADMA and p38 protein expression (P< 0.05). CONCLUSION: Blast injury causes inflammation, oxidative stress and apoptosis in the lung tissues of mice. COS has protective effects on blast injury-induced ALI, possibly by promoting DDAH1 expression and inhibiting ADMA and mitogen-activated protein kinase pathways.