Cargando…
Low-dose x-ray tomography through a deep convolutional neural network
Synchrotron-based X-ray tomography offers the potential for rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times...
Autores principales: | Yang, Xiaogang, De Andrade, Vincent, Scullin, William, Dyer, Eva L., Kasthuri, Narayanan, De Carlo, Francesco, Gürsoy, Doğa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803233/ https://www.ncbi.nlm.nih.gov/pubmed/29416047 http://dx.doi.org/10.1038/s41598-018-19426-7 |
Ejemplares similares
-
Tomosaic: efficient acquisition and reconstruction of teravoxel tomography data using limited-size synchrotron X-ray beams
por: Vescovi, Rafael, et al.
Publicado: (2018) -
Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography
por: Dyer, Eva L., et al.
Publicado: (2017) -
Detection of novel coronavirus from chest X-rays using deep convolutional neural networks
por: Sanket, Shashwat, et al.
Publicado: (2021) -
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
por: Bicer, Tekin, et al.
Publicado: (2017) -
Nanoporous gold: a hierarchical and multiscale 3D test pattern for characterizing X-ray nano-tomography systems
por: Larsson, Emanuel, et al.
Publicado: (2019)