Cargando…

Threshold-induced correlations in the Random Field Ising Model

We present a numerical study of the correlations in the occurrence times of consecutive crackling noise events in the nonequilibrium zero-temperature Random Field Ising model in three dimensions. The critical behavior of the system is portrayed by the intermittent bursts of activity known as avalanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Janićević, Sanja, Jovković, Dragutin, Laurson, Lasse, Spasojević, Djordje
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803239/
https://www.ncbi.nlm.nih.gov/pubmed/29416055
http://dx.doi.org/10.1038/s41598-018-20759-6
Descripción
Sumario:We present a numerical study of the correlations in the occurrence times of consecutive crackling noise events in the nonequilibrium zero-temperature Random Field Ising model in three dimensions. The critical behavior of the system is portrayed by the intermittent bursts of activity known as avalanches with scale-invariant properties which are power-law distributed. Our findings, based on the scaling analysis and collapse of data collected in extensive simulations show that the observed correlations emerge upon applying a finite threshold to the pertaining signals when defining events of interest. Such events are called subavalanches and are obtained by separation of original avalanches in the thresholding process. The correlations are evidenced by power law distributed waiting times and are present in the system even when the original avalanche triggerings are described by a random uncorrelated process.