Cargando…
Machine learning of correlated dihedral potentials for atomistic molecular force fields
Computer simulation increasingly complements experimental efforts to describe nanoscale structure formation. Molecular mechanics simulations and related computational methods fundamentally rely on the accuracy of classical atomistic force fields for the evaluation of inter- and intramolecular energi...
Autores principales: | Friederich, Pascal, Konrad, Manuel, Strunk, Timo, Wenzel, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803249/ https://www.ncbi.nlm.nih.gov/pubmed/29416116 http://dx.doi.org/10.1038/s41598-018-21070-0 |
Ejemplares similares
-
Revised RNA Dihedral Parameters for the Amber Force
Field Improve RNA Molecular Dynamics
por: Aytenfisu, Asaminew H., et al.
Publicado: (2017) -
Universal machine learning for the response of atomistic systems to external fields
por: Zhang, Yaolong, et al.
Publicado: (2023) -
On dihedral flows in embedded graphs
por: Litjens, Bart
Publicado: (2018) -
Polyhedral and dihedral caustics in the $R^{3}$
por: Joets, A, et al.
Publicado: (1998) -
Prediction of backbone dihedral angles and protein secondary structure using support vector machines
por: Kountouris, Petros, et al.
Publicado: (2009)