Cargando…
Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice
BACKGROUND: Obesity is associated with gut microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Given the high and increasing prevalence of obesity worldwide, anti-obesity treatments that are safe, effective and widely available would be beneficial. We examined whether the me...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803574/ https://www.ncbi.nlm.nih.gov/pubmed/28630461 http://dx.doi.org/10.1038/ijo.2017.149 |
Sumario: | BACKGROUND: Obesity is associated with gut microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Given the high and increasing prevalence of obesity worldwide, anti-obesity treatments that are safe, effective and widely available would be beneficial. We examined whether the medicinal mushroom Antrodia cinnamomea may reduce obesity in mice fed with a high-fat diet (HFD). METHODS: Male C57BL/6J mice were fed a HFD for 8 weeks to induce obesity and chronic inflammation. The mice were treated with a water extract of A. cinnamomea (WEAC), and body weight, fat accumulation, inflammation markers, insulin sensitivity and the gut microbiota were monitored. RESULTS: After 8 weeks, the mean body weight of HFD-fed mice was 39.8±1.2 g compared with 35.8±1.3 g for the HFD+1% WEAC group, corresponding to a reduction of 4 g or 10% of body weight (P<0.0001). WEAC supplementation reduced fat accumulation and serum triglycerides in a statistically significant manner in HFD-fed mice. WEAC also reversed the effects of HFD on inflammation markers (interleukin-1β, interleukin-6, tumor necrosis factor-α), insulin resistance and adipokine production (leptin and adiponectin). Notably, WEAC increased the expression of intestinal tight junctions (zonula occludens-1 and occludin) and antimicrobial proteins (Reg3g and lysozyme C) in the small intestine, leading to reduced blood endotoxemia. Finally, WEAC modulated the composition of the gut microbiota, reducing the Firmicutes/Bacteroidetes ratio and increasing the level of Akkermansia muciniphila and other bacterial species associated with anti-inflammatory properties. CONCLUSIONS: Supplementation with A. cinnamomea produces anti-obesogenic, anti-inflammatory and antidiabetic effects in HFD-fed mice by maintaining intestinal integrity and modulating the gut microbiota. |
---|