Cargando…

A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass

BACKGROUND: The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strai...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Kejing, Si, Mengying, Liu, Dan, Zhuo, Shengnan, Liu, Mingren, Liu, Hui, Yan, Xu, Shi, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5803899/
https://www.ncbi.nlm.nih.gov/pubmed/29445420
http://dx.doi.org/10.1186/s13068-018-1035-x
Descripción
Sumario:BACKGROUND: The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilensis B-8 (here after B-8) to pretreat the rice straw (RS) by mimicking the natural fungal invasion process. Here, we also elaborated the mechanism through conducting a systematic study of physicochemical changes before and after pretreatment. RESULTS: After synergistic Fenton and B-8 pretreatment, the reducing sugar yield was increased by 15.6–56.6% over Fenton pretreatment alone and 2.7–5.2 times over untreated RS (98 mg g(−1)). Morphological analysis revealed that pretreatment changed the surface morphology of the RS, and the increase in roughness and hydrophilic sites enhanced lignocellulose bioavailability. Chemical components analyses showed that B-8 removed part of the lignin and hemicellulose which caused the cellulose content to increase. In addition, the important chemical modifications also occurred in lignin, 2D NMR analysis of the lignin in residues indicated that the Fenton pretreatment caused partial depolymerization of lignin mainly by cleaving the β-O-4 linkages and by demethoxylation to remove the syringyl (S) and guaiacyl (G) units. B-8 could depolymerize amount of the G units by cleaving the β-5 linkages that interconnect the lignin subunits. CONCLUSIONS: A biomimetic system with a biochemical Fenton reaction and lignocellulose-degrading bacteria was confirmed to be able for the pretreatment of RS to enhance enzymatic hydrolysis under mild conditions. The high digestibility was attributed to the destruction of the lignin structure, partial hydrolysis of the hemicellulose and partial surface oxidation of the cellulose. The mechanism of synergistic Fenton and B-8 pretreatment was also explored to understand the change in the RS and the bacterial effects on enzymatic hydrolysis. Furthermore, this biomimetic system offers new insights into the pretreatment of lignocellulosic biomass. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13068-018-1035-x) contains supplementary material, which is available to authorized users.