Cargando…

Multiscale High-Level Feature Fusion for Histopathological Image Classification

Histopathological image classification is one of the most important steps for disease diagnosis. We proposed a method for multiclass histopathological image classification based on deep convolutional neural network referred to as coding network. It can gain better representation for the histopatholo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, ZhiFei, Deng, HuiFang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804108/
https://www.ncbi.nlm.nih.gov/pubmed/29463986
http://dx.doi.org/10.1155/2017/7521846
Descripción
Sumario:Histopathological image classification is one of the most important steps for disease diagnosis. We proposed a method for multiclass histopathological image classification based on deep convolutional neural network referred to as coding network. It can gain better representation for the histopathological image than only using coding network. The main process is that training a deep convolutional neural network is to extract high-level feature and fuse two convolutional layers' high-level feature as multiscale high-level feature. In order to gain better performance and high efficiency, we would employ sparse autoencoder (SAE) and principal components analysis (PCA) to reduce the dimensionality of multiscale high-level feature. We evaluate the proposed method on a real histopathological image dataset. Our results suggest that the proposed method is effective and outperforms the coding network.