Cargando…
Multiscale High-Level Feature Fusion for Histopathological Image Classification
Histopathological image classification is one of the most important steps for disease diagnosis. We proposed a method for multiclass histopathological image classification based on deep convolutional neural network referred to as coding network. It can gain better representation for the histopatholo...
Autores principales: | Lai, ZhiFei, Deng, HuiFang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804108/ https://www.ncbi.nlm.nih.gov/pubmed/29463986 http://dx.doi.org/10.1155/2017/7521846 |
Ejemplares similares
-
Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron()
por: Lai, ZhiFei, et al.
Publicado: (2018) -
Multiscale Feature Fusion for Skin Lesion Classification
por: Wang, Gang, et al.
Publicado: (2023) -
High-Resolution Histopathological Image Classification Model Based on Fused Heterogeneous Networks with Self-Supervised Feature Representation
por: Lai, Zhi-Fei, et al.
Publicado: (2022) -
FabNet: A Features Agglomeration-Based Convolutional Neural Network for Multiscale Breast Cancer Histopathology Images Classification
por: Amin, Muhammad Sadiq, et al.
Publicado: (2023) -
Consecutive multiscale feature learning-based image classification model
por: Olimov, Bekhzod, et al.
Publicado: (2023)